Verifiable and privacy-preserving fine-grained data management in vehicular fog computing: A game theory-based approach

被引:4
作者
Seyedi, Zahra [1 ]
Rahmati, Farhad [1 ]
Ali, Mohammad [1 ]
Liu, Ximeng [2 ,3 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran, Iran
[2] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Fujian, Peoples R China
[3] Key Lab Informat Secur Network Syst, Fuzhou 350116, Fujian, Peoples R China
关键词
Vehicular fog computing; Encrypted data processing; Data retrieval; Data management; Nash equilibrium; ACCESS-CONTROL; SECURITY;
D O I
10.1007/s12083-023-01601-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicular fog computing (VFC) is a powerful technology that extends fog computing to regular vehicular networks, providing end-users and vehicles with ultra-low-latency services. It enables connected Vehicular Fog Nodes (VFNs) to process real-time data and promptly respond to user queries. However, touching unencrypted data by VFNs raises security challenges definitely, the top of which is confidentiality, and giving encrypted data to VFNs causes other problems such as encrypted data processing. Apart from these, how to inspect and encourage VFNs to provide a secure, honest, and user-satisfactory network is of vital importance to this area. To address these challenges, we design a novel fine-grained data management (FGDM) approach for VFC-assisted systems. Our FGDM provides control over both retrieval and access to outsourced data in fine-grained ways. Also, it offers highly efficient approaches for the accuracy verification of operations performed by VFNs. In designing the system, we consider a three-player game among system entities to capture their interactions. We formulate the management problems as a Nash Equilibrium (NE) problem and show the existence of an equilibrium. Our security analysis and empirical results demonstrate that the FGDM is secure in the standard model and acceptably efficient. Our scheme's performance is rigorously assessed, offers improved speed, and is cost-effective compared to existing methods. It reduces computational and communication costs, achieving a reduction of nearly 25% compared to comparable designs.
引用
收藏
页码:410 / 431
页数:22
相关论文
共 47 条
[1]   Verifiable online/offline multi-keyword search for cloud-assisted Industrial Internet of Things [J].
Ali, Mohammad ;
Sadeghi, Mohammad-Reza ;
Liu, Ximeng ;
Miao, Yinbin ;
Vasilakos, Athanasios V. .
JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 65
[2]   Attribute-based fine-grained access control for outscored private set intersection computation [J].
Ali, Mohammad ;
Mohajeri, Javad ;
Sadeghi, Mohammad-Reza ;
Liu, Ximeng .
INFORMATION SCIENCES, 2020, 536 :222-243
[3]   A fully distributed hierarchical attribute-based encryption scheme [J].
Ali, Mohammad ;
Mohajeri, Javad ;
Sadeghi, Mohammad-Reza ;
Liu, Ximeng .
THEORETICAL COMPUTER SCIENCE, 2020, 815 :25-46
[4]  
Benabbas S, 2011, LECT NOTES COMPUT SC, V6841, P111, DOI 10.1007/978-3-642-22792-9_7
[5]   Ciphertext-policy attribute-based encryption [J].
Bethencourt, John ;
Sahai, Amit ;
Waters, Brent .
2007 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, PROCEEDINGS, 2007, :321-+
[6]  
Blanchet Bruno., 2018, ProVerif 2.00: Automatic Cryptographic Protocol Verifier
[7]  
Chai Q, 2012, IEEE ICC
[8]   Internet of Vehicles: Architecture, Protocols, and Security [J].
Contreras-Castillo, Juan ;
Zeadally, Sherali ;
Antonio Guerrero-Ibanez, Juan .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (05) :3701-3709
[9]  
Damgaard JB, 2002, PERFECT HIDING PERFE
[10]   ON THE SECURITY OF PUBLIC KEY PROTOCOLS [J].
DOLEV, D ;
YAO, AC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (02) :198-208