An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance

被引:58
作者
Sherry, Norelle L. [1 ,2 ,3 ]
Horan, Kristy A. [1 ]
Ballard, Susan A. [1 ]
da Silva, Anders Goncalves [1 ]
Gorrie, Claire L. [3 ]
Schultz, Mark B. [1 ]
Stevens, Kerrie [1 ]
Valcanis, Mary [1 ]
Sait, Michelle L. [1 ]
Stinear, Timothy P. [3 ]
Howden, Benjamin P. [1 ,2 ,3 ]
Seemann, Torsten [1 ,3 ]
机构
[1] Univ Melbourne, Peter Doherty Inst Infect & Immun, Dept Microbiol & Immunol, Microbiol Diag Unit Publ Hlth Lab MDU PHL, Melbourne, Vic, Australia
[2] Austin Hlth, Dept Infect Dis, Heidelberg, Vic, Australia
[3] Univ Melbourne, Peter Doherty Inst Infect & Immun, Dept Microbiol & Immunol, Melbourne, Vic, Australia
基金
英国医学研究理事会;
关键词
MICROBIOLOGY;
D O I
10.1038/s41467-022-35713-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Realising the promise of genomics to revolutionise identification and surveillance of antimicrobial resistance (AMR) has been a long-standing challenge in clinical and public health microbiology. Here, we report the creation and validation of abritAMR, an ISO-certified bioinformatics platform for genomics-based bacterial AMR gene detection. The abritAMR platform utilises NCBI's AMRFinderPlus, as well as additional features that classify AMR determinants into antibiotic classes and provide customised reports. We validate abritAMR by comparing with PCR or reference genomes, representing 1500 different bacteria and 415 resistance alleles. In these analyses, abritAMR displays 99.9% accuracy, 97.9% sensitivity and 100% specificity. We also compared genomic predictions of phenotype for 864 Salmonella spp. against agar dilution results, showing 98.9% accuracy. The implementation of abritAMR in our institution has resulted in streamlined bioinformatics and reporting pathways, and has been readily updated and re-verified. The abritAMR tool and validation datasets are publicly available to assist laboratories everywhere harness the power of AMR genomics in professional practice.
引用
收藏
页数:12
相关论文
共 46 条
  • [1] CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
    Alcock, Brian P.
    Raphenya, Amogelang R.
    Lau, Tammy T. Y.
    Tsang, Kara K.
    Bouchard, Megane
    Edalatmand, Arman
    Huynh, William
    Nguyen, Anna-Lisa, V
    Cheng, Annie A.
    Liu, Sihan
    Min, Sally Y.
    Miroshnichenko, Anatoly
    Tran, Hiu-Ki
    Werfalli, Rafik E.
    Nasir, Jalees A.
    Oloni, Martins
    Speicher, David J.
    Florescu, Alexandra
    Singh, Bhavya
    Faltyn, Mateusz
    Hernandez-Koutoucheva, Anastasia
    Sharma, Arjun N.
    Bordeleau, Emily
    Pawlowski, Andrew C.
    Zubyk, Haley L.
    Dooley, Damion
    Griffiths, Emma
    Maguire, Finlay
    Winsor, Geoff L.
    Beiko, Robert G.
    Brinkman, Fiona S. L.
    Hsiao, William W. L.
    Domselaar, Gary, V
    McArthur, Andrew G.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D517 - D525
  • [2] Angers-Loustau A., 2018, F1000Research, V7
  • [3] [Anonymous], 2014, Antimicrobial Resistance: Tackling a crisis forthe health and wealth of nations
  • [4] Pathogen Genomics in Public Health
    Armstrong, Gregory L.
    MacCannell, Duncan R.
    Taylor, Jill
    Carleton, Heather A.
    Neuhaus, Elizabeth B.
    Bradbury, Richard S.
    Posey, James E.
    Gwinn, Marta
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (26) : 2569 - 2580
  • [5] Australian Commission on Safety and Quality in Health Care, 2021, National Alert System for Critical Antimicrobial Resistances (CARAlert)
  • [6] SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing
    Bankevich, Anton
    Nurk, Sergey
    Antipov, Dmitry
    Gurevich, Alexey A.
    Dvorkin, Mikhail
    Kulikov, Alexander S.
    Lesin, Valery M.
    Nikolenko, Sergey I.
    Son Pham
    Prjibelski, Andrey D.
    Pyshkin, Alexey V.
    Sirotkin, Alexander V.
    Vyahhi, Nikolay
    Tesler, Glenn
    Alekseyev, Max A.
    Pevzner, Pavel A.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) : 455 - 477
  • [7] Next-generation sequencing technologies and their application to the study and control of bacterial infections
    Besser, J.
    Carleton, H. A.
    Gerner-Smidt, P.
    Lindsey, R. L.
    Trees, E.
    [J]. CLINICAL MICROBIOLOGY AND INFECTION, 2018, 24 (04) : 335 - 341
  • [8] Validation of a Bioinformatics Workflow for Routine Analysis of Whole-Genome Sequencing Data and Related Challenges for Pathogen Typing in a European National Reference Center: Neisseria meningitidis as a Proof-of-Concept
    Bogaerts, Bert
    Winand, Raf
    Fu, Qiang
    Van Braekel, Julien
    Ceyssens, Pieter-Jan
    Mattheus, Wesley
    Bertrand, Sophie
    De Keersmaecker, Sigrid C. J.
    Roosens, Nancy H. C.
    Vanneste, Kevin
    Aminov, Rustam
    De Toro, Marla
    Maruyama, Fumito
    Vanneste, Kevin
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [9] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [10] Sequencing-based methods and resources to study antimicrobial resistance
    Boolchandani, Manish
    D'Souza, Alaric W.
    Dantas, Gautam
    [J]. NATURE REVIEWS GENETICS, 2019, 20 (06) : 356 - 370