A robust false discovery rate controlling procedure using the empirical likelihood with a fast algorithm

被引:0
作者
Park, Hoyoung [1 ]
Park, Junyong [2 ,3 ]
机构
[1] Sookmyung Womens Univ, Dept Stat, Seoul, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[3] Seoul Natl Univ, Dept Stat, Gwanak Ro 1, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Multiple testing; robustness; empirical likelihood; false discovery rate;
D O I
10.1080/00949655.2023.2280916
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces a robust procedure for controlling the false discovery rate utilizing empirical likelihood. Traditional approaches assume a normal or parametric distribution as the null distribution. However, it may be challenging to constrain the null distribution within specific parametric models. We focus on the cases where the null distribution may not precisely follow a normal distribution. Multiple testing procedures based on exact normality can lead to misleading outcomes. To address this issue, we adopt the empirical likelihood to estimate the null distribution. Additionally, we introduce the concept of a pilot distribution to establish constraints on the null distribution, which aids in estimating the empirical null distribution. We present a fast algorithm and provide theoretical justification for its efficiency. Furthermore, simulation studies demonstrate that our method outperforms existing approaches in controlling the false discovery rate. We also include examples involving gene expression data and compare the performance of different methods.
引用
收藏
页码:1097 / 1120
页数:24
相关论文
共 50 条
  • [41] Null-free False Discovery Rate Control Using Decoy Permutations
    Kun He
    Meng-jie Li
    Yan Fu
    Fu-zhou Gong
    Xiao-ming Sun
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 235 - 253
  • [42] Null-free False Discovery Rate Control Using Decoy Permutations
    He, Kun
    Li, Meng-jie
    Fu, Yan
    Gong, Fu-zhou
    Sun, Xiao-ming
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (02): : 235 - 253
  • [43] Adjusting the Benjamini-Hochberg method for controlling the false discovery rate in knockoff-assisted variable selection
    Sarkar, Sanat K.
    Tang, Cheng Yong
    BIOMETRIKA, 2022, 109 (04) : 1149 - 1155
  • [44] ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts
    Laird, AR
    Fox, PM
    Price, CJ
    Glahn, DC
    Uecker, AM
    Lancaster, JL
    Turkeltaub, PE
    Kochunov, P
    Fox, PT
    HUMAN BRAIN MAPPING, 2005, 25 (01) : 155 - 164
  • [45] Quantile Correlation-Based Sufficient Variable Screening by Controlling False Discovery Rate
    Qiu, Han
    Chen, Jiaqing
    Yuan, Zihao
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (05)
  • [46] Sample size reassessment for a two-stage design controlling the false discovery rate
    Zehetmayer, Sonja
    Graf, Alexandra C.
    Posch, Martin
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2015, 14 (05) : 429 - 442
  • [47] Controlling the false-discovery rate when identifying the subgroup benefiting from treatment
    Schnell, Patrick M.
    CLINICAL TRIALS, 2023, 20 (04) : 394 - 404
  • [48] Double truncation method for controlling local false discovery rate in case of spiky null
    Kim, Shinjune
    Oh, Youngjae
    Lim, Johan
    Park, Dohwan
    Green, Erin M.
    Ramos, Mark L.
    Jeong, Jaesik
    COMPUTATIONAL STATISTICS, 2025, 40 (02) : 745 - 766
  • [49] Controlling the false discovery rate for feature selection in high-resolution NMR spectra
    Kim, Seoung Bum
    Chen, Victoria C. P.
    Park, Youngja
    Ziegler, Thomas R.
    Jones, Dean P.
    Statistical Analysis and Data Mining, 2008, 1 (02): : 57 - 66
  • [50] Prospective Calculation of Identification Power for Individual Genes in Analyses Controlling the False Discovery Rate
    Crager, Michael R.
    GENETIC EPIDEMIOLOGY, 2012, 36 (08) : 839 - 847