Effects of composite cooling strategy including phase change material and cooling air on the heat dissipation performance improvement of lithium ion power batteries pack in hot climate and its catastrophe evaluation

被引:53
作者
Shengxin, E. [1 ]
Liu, Yuxian [1 ]
Cui, Yaxin [1 ]
Wu, Aojin [1 ]
Yin, Huichun [2 ]
机构
[1] Xiamen Univ Malaysia, Sch Energy & Chem Engn, Jalan Sunsuria, Sepang 43900, Selangor, Malaysia
[2] Hunan HongXunyian New Energy Technol Co Ltd, Zhuzhou 412000, Peoples R China
关键词
Phase change material; Cooling air; Battery thermal management; Heat dissipation performance evaluation; Hot climate; Catastrophe model; THERMAL MANAGEMENT-SYSTEM; ENERGY-CONSUMPTION; EMISSIONS; FLOW;
D O I
10.1016/j.energy.2023.129074
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to improve the heat dissipation performance of lithium-ion batteries in hot climate, a coupled heat dissipation model including different air inlet and air outlet arrangements and PCM thicknesses was established by extracting cooling air from a vehicle air-conditioner. At the condition of the fixed PCM thickness, the effects of air inlet and air outlet arrangement on heat dissipation performance (HDP) of battery pack were researched, and the results indicate that case 5 is the optimal choice because of the low energy consumption and good HDP. The results of PCM thickness on HDP of battery pack be investigated through catastrophe theory analysis method. Thus, the results reveal that case 8 has highest evaluation value 0.97536 of the heat dissipation level of the battery pack among them. Based on the above results, four cases had been investigated to pursue the lower temperature difference of battery pack, and the results indicate that case 10 is the optimal choice, because of the lower energy consumption and temperature difference.
引用
收藏
页数:16
相关论文
共 63 条
[1]   A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles [J].
Akbarzadeh, Mohsen ;
Jaguemont, Joris ;
Kalogiannis, Theodoros ;
Karimi, Danial ;
He, Jiacheng ;
Jin, Lu ;
Xie, Peng ;
Mierlo, Joeri Van ;
Berecibar, Maitane .
ENERGY CONVERSION AND MANAGEMENT, 2021, 231
[2]   Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source [J].
Bai, Fanfei ;
Chen, Mingbiao ;
Song, Wenji ;
Feng, Ziping ;
Li, Yongliang ;
Ding, Yulong .
APPLIED THERMAL ENGINEERING, 2017, 126 :17-27
[3]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[4]   A critical review of phase change material composite performance through Figure-of-Merit analysis: Graphene vs Boron Nitride [J].
Bin Shahid, Usman ;
Abdala, Ahmed .
ENERGY STORAGE MATERIALS, 2021, 34 :365-387
[5]   Removal and mechanism analysis of NOx emissions in carbon-free ammonia combustion systems with a secondary fuel injection [J].
Cai, Tao ;
Zhao, Dan ;
Ji, Lin ;
Agarwal, Avinash Kumar .
FUEL, 2023, 344
[6]   Effects of fuel composition and wall thermal conductivity on thermal and NOx emission performances of an ammonia/hydrogen-oxygen micro-power system [J].
Cai, Tao ;
Zhao, Dan .
FUEL PROCESSING TECHNOLOGY, 2020, 209
[7]   Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study [J].
Cao, Jiahao ;
Luo, Mingyun ;
Fang, Xiaoming ;
Ling, Ziye ;
Zhang, Zhengguo .
ENERGY, 2020, 191
[8]   The Enhanced Performance of Phase-Change Materials via 3D Printing with Prickly Aluminum Honeycomb for Thermal Management of Ternary Lithium Batteries [J].
Cao, Ming ;
Huang, Juhua ;
Liu, Ziqiang .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
[9]   Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement [J].
Chen, Kai ;
Song, Mengxuan ;
Wei, Wei ;
Wang, Shuangfeng .
ENERGY, 2018, 145 :603-613
[10]   Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor [J].
Chen, Song ;
Zhao, Dan .
AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 74 :81-92