Immersive Video Postprocessing for Efficient Video Coding

被引:7
作者
Dziembowski, Adrian [1 ]
Mieloch, Dawid [1 ]
Jeong, Jun Young [2 ]
Lee, Gwangsoon [2 ]
机构
[1] Poznan Univ Tech, Inst Multimedia Telecommun, PL-60965 Poznan, Poland
[2] Elect & Telecommun Res Inst, Daejeon 34129, South Korea
关键词
Immersive video coding; MPEG immersive video; video processing; ARTIFACTS REDUCTION; COMPRESSION; ENHANCEMENT; MULTIVIEW;
D O I
10.1109/TCSVT.2023.3243381
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes two methods for increasing the efficiency of the MPEG Immersive Video (MIV) coding standard. The methods manipulate the MIV-formatted atlas videos by considering the coding principles of the widely used video encoders, enhancing the encoding efficiency for the immersive video content. The first method, patch average color modification removes the constant component of all YCbCr components of each patch within atlases, resulting in the reduction of the number and magnitude of edges within a texture atlas video. The second proposed method changes the dynamic range of the geometry (depth) atlas, adapting to the quality of input depth maps. Both methods proposed by the authors of this paper were included into the Test Model for MPEG Immersive Video (TMIV), which is the reference implementation of the MIV codec. Moreover, the metadata syntax relating to the first proposed method was adopted to the ISO/IEC 23090-12 standard.
引用
收藏
页码:4349 / 4361
页数:13
相关论文
共 54 条
[51]   VVENC: AN OPEN AND OPTIMIZED VVC ENCODER IMPLEMENTATION [J].
Wieckowski, Adam ;
Brandenburg, Jens ;
Hinz, Tobias ;
Bartnik, Christian ;
George, Valeri ;
Hege, Gabriel ;
Helmrich, Christian ;
Henkel, Anastasia ;
Lehmann, Christian ;
Stoffers, Christian ;
Zupancic, Ivan ;
Bross, Benjamin ;
Marpe, Detlev .
2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,
[52]   Standardization Status of Immersive Video Coding [J].
Wien, Mathias ;
Boyce, Jill M. ;
Stockhammer, Thomas ;
Peng, Wen-Hsiao .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2019, 9 (01) :5-17
[53]  
xilinx.com, H 264 H 265 VID COD
[54]   Deep Learning-Based Perceptual Video Quality Enhancement for 3D Synthesized View [J].
Zhang, Huan ;
Zhang, Yun ;
Zhu, Linwei ;
Lin, Weisi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) :5080-5094