Generalised deep learning model for semi-automated length measurement of fish in stereo-BRUVS

被引:10
作者
Marrable, Daniel [1 ]
Tippaya, Sawitchaya [1 ]
Barker, Kathryn [1 ]
Harvey, Euan [2 ]
Bierwagen, Stacy L. [3 ]
Wyatt, Mathew [4 ]
Bainbridge, Scott [3 ]
Stowar, Marcus [3 ]
机构
[1] Curtin Univ, Curtin Inst Computat, Perth, WA, Australia
[2] Curtin Univ, Sch Mol & Life Sci, Perth, WA, Australia
[3] Australian Inst Marine Sci, Townsville, Qld, Australia
[4] Univ Western Australia, Australian Inst Marine Sci, Indian Ocean Marine Res Ctr, Perth, WA, Australia
关键词
stereo-BRUVS; deep learning; automated fish length; photogrammetry; machine learning; cameras; REEF-FISH; VIDEO; ACCURACY; BIOMASS; PRECISION; DIVERS; SYSTEM; SIZE;
D O I
10.3389/fmars.2023.1171625
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Assessing the health of fish populations relies on determining the length of fish in sample species subsets, in conjunction with other key ecosystem markers; thereby, inferring overall health of communities. Despite attempts to use artificial intelligence (AI) to measure fish, most measurement remains a manual process, often necessitating fish being removed from the water. Overcoming this limitation and potentially harmful intervention by measuring fish without disturbance in their natural habitat would greatly enhance and expedite the process. Stereo baited remote underwater video systems (stereo-BRUVS) are widely used as a non-invasive, stressless method for manually counting and measuring fish in aquaculture, fisheries and conservation management. However, the application of deep learning (DL) to stereo-BRUVS image processing is showing encouraging progress towards replacing the manual and labour-intensive task of precisely locating the heads and tails of fish with computer-vision-based algorithms. Here, we present a generalised, semi-automated method for measuring the length of fish using DL with near-human accuracy for numerous species of fish. Additionally, we combine the DL method with a highly precise stereo-BRUVS calibration method, which uses calibration cubes to ensure precision within a few millimetres in calculated lengths. In a human versus DL comparison of accuracy, we show that, although DL commonly slightly over-estimates or under-estimates length, with enough repeated measurements, the two values average and converge to the same length, demonstrated by a Pearson correlation coefficient (r) of 0.99 for n=3954 measurement in 'out-of-sample' test data. We demonstrate, through the inclusion of visual examples of stereo-BRUVS scenes, the accuracy of this approach. The head-to-tail measurement method presented here builds on, and advances, previously published object detection for stereo-BRUVS. Furthermore, by replacing the manual process of four careful mouse clicks on the screen to precisely locate the head and tail of a fish in two images, with two fast clicks anywhere on that fish in those two images, a significant reduction in image processing and analysis time is expected. By reducing analysis times, more images can be processed; thereby, increasing the amount of data available for environmental reporting and decision making.
引用
收藏
页数:11
相关论文
共 72 条
[1]   A powerful method for measuring fish size of small-scale fishery catches using ImageJ [J].
Andrialovanirina, Nicolas ;
Ponton, Dominique ;
Behivoke, Faustinato ;
Mahafina, Jamal ;
Leopold, Marc .
FISHERIES RESEARCH, 2020, 223
[2]  
[Anonymous], 2003, Aquatic Protected Areas. What Works Best and How Do We Know?
[3]   Vision-based discrimination of tuna individuals in grow-out cages through a fish bending model [J].
Atienza-Vanacloig, Vicente ;
Andreu-Garcia, Gabriela ;
Lopez-Garcia, Fernando ;
Valiente-Gonzalez, Jose M. ;
Puig-Pons, Vicente .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 130 :142-150
[4]  
Australian Institute Of Marine Science, 2020, OZF DAT MACH LEARN D, DOI [10.25845/5E28F062C5097, DOI 10.25845/5E28F062C5097]
[5]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[6]   A comparison of calibration methods and system configurations of underwater stereo-video systems for applications in marine ecology [J].
Boutros, Nader ;
Shortis, Mark R. ;
Harvey, Euan S. .
LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2015, 13 (05) :224-236
[7]   Opportunities to improve fisheries management through innovative technology and advanced data systems [J].
Bradley, Darcy ;
Merrifield, Matt ;
Miller, Karly M. ;
Lomonico, Serena ;
Wilson, Jono R. ;
Gleason, Mary G. .
FISH AND FISHERIES, 2019, 20 (03) :564-583
[8]   A PRELIMINARY REPORT ON A METHOD OF ESTIMATING REEF FISH POPULATIONS [J].
BROCK, VE .
JOURNAL OF WILDLIFE MANAGEMENT, 1954, 18 (03) :297-308
[9]  
Cappo M., 2001, Direct sensing of the size frequency and abundance of target and non-target fauna in Australian Fisheries-a national workshop, P63
[10]   Improved Accuracy for Automated Counting of a Fish in Baited Underwater Videos for Stock Assessment [J].
Connolly, Rod M. ;
Fairclough, David V. ;
Jinks, Eric L. ;
Ditria, Ellen M. ;
Jackson, Gary ;
Lopez-Marcano, Sebastian ;
Olds, Andrew D. ;
Jinks, Kristin I. .
FRONTIERS IN MARINE SCIENCE, 2021, 8