The solvent-free hydrogenation of butyl levulinate to γ-valerolactone and 1,4-pentanediol over skeletal Cu-Al-Zn catalyst

被引:3
作者
Li, Bo [1 ,3 ,4 ,5 ]
Guo, Haijun [1 ,2 ,3 ,4 ]
Xiong, Zhen [1 ,2 ,3 ,4 ]
Xiong, Lian [1 ,3 ,4 ]
Yao, Shimiao [1 ,3 ,4 ]
Wang, Mengkun [1 ,3 ,4 ]
Zhang, Hairong [1 ,2 ,3 ,4 ]
Chen, Xinde [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, 2 Nengyuan Rd, Guangzhou 510640, Peoples R China
[2] Univ Sci & Technol China, Sch Energy Sci & Engn, Hefei 230026, Peoples R China
[3] Guangdong Prov Key Lab New & Renewable Energy Res, 2 Nengyuan Rd, Guangzhou 510640, Peoples R China
[4] R&D Ctr Xuyi Attapulgite Energy & Environm Mat, Xuyi 211700, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
MOLECULAR CATALYSIS | 2023年 / 540卷
关键词
Butyl levulinate; Solvent -free hydrogenation; gamma-valerolactone; Skeletal Cu -Al -Zn catalysts; SURFACE-COMPOSITION; ACID; CONVERSION; CO;
D O I
10.1016/j.mcat.2023.113046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
?-valerolactone (GVL) is a sustainable chemical, which can be obtained by hydrogenation of levulinic acid (LA) and levulinate. Herein, we reported a solvent-free hydrogenation of butyl levulinate (BL) to GVL and 1,4-pentanediol (1,4-PDO) over a skeletal Cu-Al-Zn catalyst. The skeletal Cu-Al-Zn catalyst was prepared from Devarda's alloy by alkali leaching and the catalyst was characterized by different analysis methods. The aluminum in the Devarda's alloy was dissolved by sodium hydroxide in the leaching process and many active Cu atoms were generated on the catalyst surface and the skeletal Cu-Al-Zn exhibited many micrometer-scale irregular particles with rough surface. The skeletal Cu-Al-Zn catalyst showed the excellent performance in the solvent-free hydrogenation of BL to GVL under constant hydrogen pressure (5 wt% catalyst loading, 180C, 6 MPa of H2, 6 h): the LA conversion was 100%, the GVL yield was 74.75% and the 1,4-PDO yield was 25.63%. Moreover, the catalyst showed stable performance and it was reusable up to 5 times without apparent loss of activity. A stable hydrogen pressure with Zn would suppressed the dehydration of 1,4-PDO.
引用
收藏
页数:10
相关论文
共 42 条
  • [1] Aqueous-Phase Hydrogenation of Levulinic Acid Using Formic Acid as a Sustainable Reducing Agent Over Pt Catalysts Supported on Mesoporous Zirconia
    Al-Naji, M.
    Popova, M.
    Chen, Z.
    Wilde, N.
    Glaeser, R.
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (01) : 393 - 402
  • [2] Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited
    Bozell, Joseph J.
    Petersen, Gene R.
    [J]. GREEN CHEMISTRY, 2010, 12 (04) : 539 - 554
  • [3] Boosting levulinic acid hydrogenation to value-added 1,4-pentanediol using microwave-assisted gold catalysis
    Bucciol, F.
    Tabasso, S.
    Grillo, G.
    Menegazzo, F.
    Signoretto, M.
    Manzoli, M.
    Cravotto, G.
    [J]. JOURNAL OF CATALYSIS, 2019, 380 : 267 - 277
  • [4] Enhanced Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone over a Robust Cu-Ni Bimetallic Catalyst
    Cai, Bo
    Zhou, Xin-Cheng
    Miao, Ying-Chun
    Luo, Jin-Yue
    Pan, Hui
    Huang, Yao-Bing
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (02): : 1322 - 1331
  • [5] Experimental and kinetic modeling studies on the biphasic hydrogenation of levulinic acid to γ-valerolactone using a homogeneous water-soluble Ru-(TPPTS) catalyst
    Chalid, M.
    Broekhuis, A. A.
    Heeres, H. J.
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2011, 341 (1-2) : 14 - 21
  • [6] Aqueous Hydrogenation of Levulinic Acid to 1,4-Pentanediol over Mo-Modified Ru/Activated Carbon Catalyst
    Cui, Jinglei
    Tan, Jingjing
    Zhu, Yulei
    Cheng, Fangqin
    [J]. CHEMSUSCHEM, 2018, 11 (08) : 1316 - 1320
  • [7] Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply
    Deng, Li
    Li, Jiang
    Lai, Da-Ming
    Fu, Yao
    Guo, Qing-Xiang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (35) : 6529 - 6532
  • [8] Continuous Hydrogenation of Ethyl Levulinate to 1,4-Pentanediol over 2.8Cu-3.5Fe/SBA-15 Catalyst at Low Loading: The Effect of Fe Doping
    Deng, Tianyu
    Yan, Long
    Li, Xinglong
    Fu, Yao
    [J]. CHEMSUSCHEM, 2019, 12 (16) : 3837 - 3848
  • [9] From giant reed to levulinic acid and gamma-valerolactone: A high yield catalytic route to valeric biofuels
    Galletti, Anna Maria Raspolli
    Antonetti, Claudia
    Ribechini, Erika
    Colombini, Maria Perla
    Di Nasso, Nicoletta Nassi O.
    Bonari, Enrico
    [J]. APPLIED ENERGY, 2013, 102 : 157 - 162
  • [10] Supported Bimetallic Catalysts for the Solvent-Free Hydrogenation of Levulinic Acid to γ-Valerolactone: Effect of Metal Combination (Ni-Cu, Ni-Co, Cu-Co)
    Gebresillase, Mahlet N.
    Raguindin, Reibelle Q.
    Kim, Hern
    Seo, Jeong Gil
    [J]. CATALYSTS, 2020, 10 (11) : 1 - 20