Gaussian processes for the analysis of electrochemical impedance spectroscopy data: Prediction, filtering, and active learning

被引:10
|
作者
Py, Baptiste [1 ]
Maradesa, Adeleke [1 ]
Ciucci, Francesco [1 ,2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
[2] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Futian, Peoples R China
关键词
Electrochemical impedance spectroscopy; Gaussian processes; Filtering; Charge-transfer resistance; Active learning; RELAXATION-TIMES; MEASUREMENT MODELS; REGULARIZATION; BATTERIES; ERROR;
D O I
10.1016/j.electacta.2022.141688
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical impedance spectroscopy (EIS) is a widespread characterization technique used to study elec-trochemical systems. However, several shortcomings still limit the application of this technique. First, EIS data, unless acquired in well-controlled experiments, is intrinsically noisy, hindering spectra regression and prediction. Second, many physicochemical properties, such as the charge-transfer resistance, are determined through non -unique equivalent circuits. Third, probed frequencies are usually log-spaced with a fixed number of points per decade, which is not necessarily optimal. Gaussian processes can be used to filter out noise in EIS data, determine the charge-transfer resistance as a stochastic variable, and optimize frequency placement. In this regard, a Gaussian-process-based, active-learning framework is developed to optimize EIS frequency selection for quick and accurate measurements. This work opens new avenues of research regarding the use of Gaussian processes for EIS experiment optimization.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A NEW APPROACH TO THE PROBLEM OF GOOD AND BAD IMPEDANCE DATA IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
    POPKIROV, GS
    SCHINDLER, RN
    ELECTROCHIMICA ACTA, 1994, 39 (13) : 2025 - 2030
  • [42] Detection of methotrexate in a flow system using electrochemical impedance spectroscopy and multivariate data analysis
    Tesfalidet, Solomon
    Geladi, Paul
    Shimizu, Kenichi
    Lindholm-Sethson, Britta
    ANALYTICA CHIMICA ACTA, 2016, 914 : 1 - 6
  • [43] CORROSION OF MILD-STEEL USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY DATA-ANALYSIS
    ROBERGE, PR
    HALLIOP, E
    SASTRI, VS
    CORROSION, 1992, 48 (06) : 447 - 454
  • [44] Evaluation of industrial cutting fluids using electrochemical impedance spectroscopy and multivariate data analysis
    Ulrich, Christian
    Louthander, Dan
    Martensson, Per
    Kluftinger, Andre
    Gawronski, Michael
    Bjorefors, Fredrik
    TALANTA, 2012, 97 : 468 - 472
  • [45] Correlation between Tafel Analysis and Electrochemical Impedance Spectroscopy by Prediction of Amperometric Response from EIS
    Park, Kyungsoon
    Chang, Byoung-Yong
    Hwang, Seongpil
    ACS OMEGA, 2019, 4 (21): : 19307 - 19313
  • [46] Prediction under Uncertainty in Sparse Spectrum Gaussian Processes with Applications to Filtering and Control
    Pan, Yunpeng
    Yan, Xinyan
    Theodorou, Evangelos A.
    Boots, Byron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [47] A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy
    Kolosnitsyn, V. S.
    Kuzmina, E. V.
    Karaseva, E. V.
    Mochalov, S. E.
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1478 - 1482
  • [48] Electrochemical Impedance Spectroscopy study on the absorption and evaporation processes in natural stones
    Sena da Fonseca, B.
    Castela, A. S.
    Ferreira Pinto, A. P.
    Picarra, S.
    Montemor, M. F.
    ELECTROCHIMICA ACTA, 2017, 233 : 62 - 70
  • [49] ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) - A POWERFUL INSITU TECHNIQUE FOR ELECTRODE PROCESSES
    PAATSCH, W
    TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 1991, 69 : 90 - 91
  • [50] Waste incineration corrosion processes:: Oxidation mechanisms by electrochemical impedance spectroscopy
    Perez, F. J.
    Hierro, M. P.
    Nieto, J.
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2008, 59 (07): : 566 - 572