T Cells in Colorectal Cancer: Unravelling the Function of Different T Cell Subsets in the Tumor Microenvironment

被引:42
作者
Zheng, Ziwen [1 ]
Wieder, Thomas [2 ]
Mauerer, Bernhard [1 ,3 ,4 ]
Schaefer, Luisa [1 ]
Kesselring, Rebecca [1 ,3 ,4 ]
Braumueller, Heidi [1 ]
机构
[1] Univ Freiburg, Fac Med, Med Ctr, Dept Gen & Visceral Surg, D-79106 Freiburg, Germany
[2] Eberhard Karls Univ Tubingen, Inst Physiol, Dept Vegetat & Clin Physiol, D-72074 Tubingen, Germany
[3] German Canc Consortium DKTK Partner Site Freiburg, D-79106 Freiburg, Germany
[4] German Canc Res Ctr, D-69120 Heidelberg, Germany
关键词
colorectal cancer; immunoscore; immune checkpoint blockade; tumor-infiltrating T cells; T cell therapy; gamma delta T cells; alpha beta T cells; NKT cells; CONSENSUS MOLECULAR SUBTYPES; COLON-CANCER; TGF-BETA; PHASE-I; NKT CELLS; MICROSATELLITE INSTABILITY; IMMUNE SURVEILLANCE; ANTITUMOR-ACTIVITY; RADIATION-THERAPY; PROGNOSTIC-FACTOR;
D O I
10.3390/ijms241411673
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Therapeutic options for metastatic colorectal cancer (mCRC) are very limited, and the prognosis using combination therapy with a chemotherapeutic drug and a targeted agent, e.g., epidermal growth factor receptor or tyrosine kinase, remains poor. Therefore, mCRC is associated with a poor median overall survival (mOS) of only 25-30 months. Current immunotherapies with checkpoint inhibitor blockade (ICB) have led to a substantial change in the treatment of several cancers, such as melanoma and non-small cell lung cancer. In CRC, ICB has only limited effects, except in patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors, which comprise about 15% of sporadic CRC patients and about 4% of patients with metastatic CRC. The vast majority of sporadic CRCs are microsatellite-stable (MSS) tumors with low levels of infiltrating immune cells, in which immunotherapy has no clinical benefit so far. Immunotherapy with check-point inhibitors requires the presence of infiltrating T cells into the tumor microenvironment (TME). This makes T cells the most important effector cells in the TME, as evidenced by the establishment of the immunoscore-a method to estimate the prognosis of CRC patients. The microenvironment of a tumor contains several types of T cells that are anti-tumorigenic, such as CD8(+) T cells or pro-tumorigenic, such as regulatory T cells (Tregs) or T helper 17 (Th17) cells. However, even CD8(+) T cells show marked heterogeneity, e.g., they can become exhausted, enter a state of hyporesponsiveness or become dysfunctional and express high levels of checkpoint molecules, the targets for ICB. To kill cancer cells, CD8+ T cells need the recognition of the MHC class I, which is often downregulated on colorectal cancer cells. In this case, a population of unconventional T cells with a gamma delta T cell receptor can overcome the limitations of the conventional CD8+ T cells with an fffiT cell receptor. gamma delta T cells recognize antigens in an MHC-independent manner, thus acting as a bridge between innate and adaptive immunity. Here, we discuss the effects of different T cell subsets in colorectal cancer with a special emphasis on gamma delta T cells and the possibility of using them in CAR-T cell therapy. We explain T cell exclusion in microsatellite-stable colorectal cancer and the possibilities to overcome this exclusion to enable immunotherapy even in these "cold" tumors.
引用
收藏
页数:35
相关论文
共 250 条
[1]   PAK4 inhibition improves PD-1 blockade immunotherapy [J].
Abril-Rodriguez, Gabriel ;
Torrejon, Davis Y. ;
Liu, Wei ;
Zaretsky, Jesse M. ;
Nowicki, Theodore S. ;
Tsoi, Jennifer ;
Puig-Saus, Cristina ;
Baselga-Carretero, Ignacio ;
Medina, Egmidio ;
Quist, Michael J. ;
Garcia, Alejandro J. ;
Senapedis, William ;
Baloglu, Erkan ;
Kalbasi, Anusha ;
Cheung-Lau, Gardenia ;
Berent-Maoz, Beata ;
Comin-Anduix, Begona ;
Hu-Lieskovan, Siwen ;
Wang, Cun-Yu ;
Grasso, Catherine S. ;
Ribas, Antoni .
NATURE CANCER, 2020, 1 (01) :46-+
[2]   Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma [J].
Ahmed, Nabil ;
Brawley, Vita S. ;
Hegde, Meenakshi ;
Robertson, Catherine ;
Ghazi, Alexia ;
Gerken, Claudia ;
Liu, Enli ;
Dakhova, Olga ;
Ashoori, Aidin ;
Corder, Amanda ;
Gray, Tara ;
Wu, Meng-Fen ;
Liu, Hao ;
Hicks, John ;
Rainusso, Nino ;
Dotti, Gianpietro ;
Mei, Zhuyong ;
Grilley, Bambi ;
Gee, Adrian ;
Rooney, Cliona M. ;
Brenner, Malcolm K. ;
Heslop, Helen E. ;
Wels, Winfried S. ;
Wang, Lisa L. ;
Anderson, Peter ;
Gottschalk, Stephen .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (15) :1688-+
[3]   PD-1 expression, among other immune checkpoints, on tumor-infiltrating NK and NKT cells is associated with longer disease-free survival in treatment-naive CRC patients [J].
Al-Mterin, Mohammad A. ;
Murshed, Khaled ;
Elkord, Eyad .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2023, 72 (06) :1933-1939
[4]   Neoadjuvant relatlimab and nivolumab in resectable melanoma [J].
Amaria, Rodabe N. ;
Postow, Michael ;
Burton, Elizabeth M. ;
Tezlaff, Michael T. ;
Ross, Merrick, I ;
Torres-Cabala, Carlos ;
Glitza, Isabella C. ;
Duan, Fei ;
Milton, Denai R. ;
Busam, Klaus ;
Simpson, Lauren ;
McQuade, Jennifer L. ;
Wong, Michael K. ;
Gershenwald, Jeffrey E. ;
Lee, Jeffrey E. ;
Goepfert, Ryan P. ;
Keung, Emily Z. ;
Fisher, Sarah B. ;
Betof-Warner, Allison ;
Shoushtari, Alexander N. ;
Callahan, Margaret ;
Coit, Daniel ;
Bartlett, Edmund K. ;
Bello, Danielle ;
Momtaz, Parisa ;
Nicholas, Courtney ;
Gu, Aidi ;
Zhang, Xuejun ;
Korivi, Brinda Rao ;
Patnana, Madhavi ;
Patel, Sapna P. ;
Diab, Adi ;
Lucci, Anthony ;
Prieto, Victor G. ;
Davies, Michael A. ;
Allison, James P. ;
Sharma, Padmanee ;
Wargo, Jennifer A. ;
Ariyan, Charlotte ;
Tawbi, Hussein A. .
NATURE, 2022, 611 (7934) :155-+
[5]   Regulation of tumor immunity: the role of NKT cells [J].
Ambrosino, Elena ;
Berzofsky, Jay A. ;
Terabe, Masaki .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2008, 8 (06) :725-734
[6]   Cross-regulation between type I and type IINKT cells in regulating tumor immunity: A new immunoregulatory axis [J].
Ambrosino, Elena ;
Terabe, Masaki ;
Halder, Ramesh C. ;
Peng, Judy ;
Takaku, Shun ;
Miyake, Sachiko ;
Yamamura, Takashi ;
Kumar, Vipin ;
Berzofsky, Jay A. .
JOURNAL OF IMMUNOLOGY, 2007, 179 (08) :5126-5136
[7]   Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer [J].
Amicarella, F. ;
Muraro, M. G. ;
Hirt, C. ;
Cremonesi, E. ;
Padovan, E. ;
Mele, V. ;
Governa, V. ;
Han, J. ;
Huber, X. ;
Droeser, R. A. ;
Zuber, M. ;
Adamina, M. ;
Bolli, M. ;
Rosso, R. ;
Lugli, A. ;
Zlobec, I. ;
Terracciano, L. ;
Tornillo, L. ;
Zajac, P. ;
Eppenberger-Castori, S. ;
Trapani, F. ;
Oertli, D. ;
Iezzi, G. .
GUT, 2017, 66 (04) :692-704
[8]   Obstacles Posed by the Tumor Microenvironment to T cell Activity: A Case for Synergistic Therapies [J].
Anderson, Kristin G. ;
Stromnes, Ingunn M. ;
Greenberg, Philip D. .
CANCER CELL, 2017, 31 (03) :311-325
[9]   Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142 [J].
Andre, T. ;
Lonardi, S. ;
Wong, K. Y. M. ;
Lenz, H. -J ;
Gelsomino, F. ;
Aglietta, M. ;
Van Cutsem, E. ;
McDermott, R. ;
Hill, A. ;
Sawyer, M. B. ;
Hendlisz, A. ;
Neyns, B. ;
Abdullaev, S. ;
Memaj, A. ;
Lei, M. ;
Dixon, M. ;
Kopetz, S. ;
Overman, M. J. ;
Morse, M. A. .
ANNALS OF ONCOLOGY, 2022, 33 (10) :1052-1060
[10]   Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy [J].
Angelova, Mihaela ;
Charoentong, Pornpimol ;
Hackl, Hubert ;
Fischer, Maria L. ;
Snajder, Rene ;
Krogsdam, Anne M. ;
Waldner, Maximilian J. ;
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Galon, Jerome ;
Trajanoski, Zlatko .
GENOME BIOLOGY, 2015, 16