Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer

被引:15
作者
Han, Taehee [1 ,2 ,3 ,4 ,5 ,6 ]
Lee, Sang Yup [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Metab & Biomol Engn Natl Res Lab & Syst Metab Engn, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn BK21 four, Syst Healthcare Cross Generat Collaborat Lab, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst BioCentury, Daejeon 34141, South Korea
[4] Korea Adv Inst Sci & Technol, KAIST Inst Artificial Intelligence, Daejeon 34141, South Korea
[5] Korea Adv Inst Sci & Technol, Bioproc Engn Res Ctr, Daejeon 34141, South Korea
[6] Korea Adv Inst Sci & Technol, BioInformat Res Ctr, Daejeon 34141, South Korea
[7] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Biorefineries; Corynebacterium glutamicum; Metabolic engineering; Valerolactam; ESCHERICHIA-COLI; GLUTARIC ACID;
D O I
10.1016/j.ymben.2023.07.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Valerolactam (VL) is an important precursor chemical for nylon-5 and nylon 6,5. It has been produced by petroleum-based route involving harsh reaction conditions and generating toxic wastes. Here, we report the complete biosynthesis of VL by metabolically engineered Corynebacterium glutamicum overproducing L-lysine. The pathway comprising L-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) from Pseudomonas putida, and & beta;-alanine CoA transferase (act) from Clostridium propionicum was introduced into the C. glutamicum GA16 strain. To increase the VL flux, competitive pathways predicted from sRNA knockdown target screening were deleted. This engineered C. glutamicum strain produced VL as a major product, but still secreted significant amount of its precursor, 5-aminovaleric acid (5AVA). To circumvent this problem, putative 5AVA transporter genes were screened and engineered in the genome, thereby reuptaking 5AVA excreted. Also, multiple copies of the act gene were integrated into the genome to strengthen the conversion of 5AVA to VL. The final VL10 (pVL1) strain was constructed by enhancing glucose uptake system, which produced 9.68 g/L of VL in flask culture. Fed-batch fermentation of the VL10 (pVL1) strain produced 76.1 g/L of VL from glucose with the yield and productivity of 0.28 g/g and 0.99 g/L/h, respectively, showcasing a high potential for bio-based production of VL from renewable resources.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
[41]   Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical [J].
Kim, Hee Taek ;
Khang, Tae Uk ;
Baritugo, Kei-Anne ;
Hyun, Sung Min ;
Kang, Kyoung Hee ;
Jung, Sol Hee ;
Song, Bong Keun ;
Park, Kyungmoon ;
Oh, Min-Kyu ;
Kim, Gi Bae ;
Kim, Hyun Uk ;
Lee, Sang Yup ;
Park, Si Jae ;
Joo, Jeong Chan .
METABOLIC ENGINEERING, 2019, 51 :99-109
[42]   High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production [J].
Kang, Mi-Suk ;
Han, Sang-Soo ;
Kim, Mi-Young ;
Kim, Bu-Youn ;
Huh, Jong-Pil ;
Kim, Hak-Sung ;
Lee, Jin-Ho .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (10) :4379-4387
[43]   Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine [J].
Becker, Judith ;
Schaefer, Rudolf ;
Kohlstedt, Michael ;
Harder, Bjoern J. ;
Borchert, Nicole S. ;
Stoeveken, Nadine ;
Bremer, Erhard ;
Wittmann, Christoph .
MICROBIAL CELL FACTORIES, 2013, 12
[44]   Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid [J].
Schwardmann, Lynn S. ;
Dransfeld, Aron K. ;
Schaeffer, Thomas ;
Wendisch, Volker F. .
MICROORGANISMS, 2022, 10 (04)
[45]   Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production [J].
Chen, Cheng ;
Li, Yanyan ;
Hu, Jinyu ;
Dong, Xunyan ;
Wang, Xiaoyuan .
METABOLIC ENGINEERING, 2015, 29 :66-75
[46]   Metabolic engineering of L-leucine production in Escherichia coli and Corynebacterium glutamicum: a review [J].
Wang, Ying-Yu ;
Xu, Jian-Zhong ;
Zhang, Wei-Guo .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2019, 39 (05) :633-647
[47]   High-level recombinant protein production with Corynebacterium glutamicum using acetate as carbon source [J].
Kiefer, Dirk ;
Tadele, Lea Rahel ;
Lilge, Lars ;
Henkel, Marius ;
Hausmann, Rudolf .
MICROBIAL BIOTECHNOLOGY, 2022, 15 (11) :2744-2757
[48]   Metabolic Engineering of Corynebacterium glutamicum for 2-Ketoisovalerate Production [J].
Krause, Felix S. ;
Blombach, Bastian ;
Eikmanns, Bernhard J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (24) :8053-8061
[49]   Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery [J].
Kei-Anne Baritugo ;
Hee Taek Kim ;
Yokimiko David ;
Jong-il Choi ;
Soon Ho Hong ;
Ki Jun Jeong ;
Jong Hyun Choi ;
Jeong Chan Joo ;
Si Jae Park .
Applied Microbiology and Biotechnology, 2018, 102 :3915-3937
[50]   Metabolic engineering of Corynebacterium glutamicum for l-cysteine production [J].
Wei, Liang ;
Wang, Hao ;
Xu, Ning ;
Zhou, Wei ;
Ju, Jiansong ;
Liu, Jun ;
Ma, Yanhe .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (03) :1325-1338