Artificial Intelligence and Machine Learning Applications in Spine Surgery

被引:11
作者
Lee, Nathan J. [1 ]
Lombardi, Joseph M. [1 ]
Lehman, Ronald A. [1 ]
机构
[1] Columbia Univ, Och Spine Hosp New York Presbyterian, Med Ctr, Dept Orthopaed, New York, NY USA
关键词
machine learning; artificial intelligence; cervical spine; lumbar spine; adult spinal deformity; predictive model; PREOPERATIVE PREDICTIVE MODEL; LOGISTIC-REGRESSION; NEURAL-NETWORKS; DEFORMITY; COMPLICATIONS;
D O I
10.14444/8503
中图分类号
R61 [外科手术学];
学科分类号
摘要
The complexity of patients with spine pathology and high rates of complications has driven extensive research directed toward optimizing outcomes and reducing complications. Traditional statistical analysis has been limited both in validity and in the number of predictor variables considered. Over the past decade, artificial intelligence and machine learning have taken center stage as the possible solution to creating more accurate and applicable patient--centered predictive models in spine surgery. This review discusses the current published machine learning applications on preoperative optimization, risk stratification, and predictive modeling for the cervical, lumbar, and adult spinal deformity populations.
引用
收藏
页码:S18 / S25
页数:8
相关论文
共 36 条
[1]   Artificial Intelligence Based Hierarchical Clustering of Patient Types and Intervention Categories in Adult Spinal Deformity Surgery Towards a New Classification Scheme that Predicts Quality and Value [J].
Ames, Christopher P. ;
Smith, Justin S. ;
Pellise, Ferran ;
Kelly, Michael ;
Alanay, Ahmet ;
Acaroglu, Emre ;
Sanchez Perez-Grueso, Francisco Javier ;
Kleinstuck, Frank ;
Obeid, Ibrahim ;
Vila-Casademunt, Alba ;
Shaffrey, Christopher I., Jr. ;
Burton, Douglas ;
Lafage, Virginie ;
Schwab, Frank ;
Shaffrey Sr, Christopher I. Sr ;
Bess, Shay ;
Serra-Burriel, Miguel .
SPINE, 2019, 44 (13) :915-926
[2]   Development of Deployable Predictive Models for Minimal Clinically Important Difference Achievement Across the Commonly Used Health-related Quality of Life Instruments in Adult Spinal Deformity Surgery [J].
Ames, Christopher P. ;
Smith, Justin S. ;
Pellise, Ferran ;
Kelly, Michael P. ;
Gum, Jeffrey L. ;
Alanay, Ahmet ;
Acaroglu, Emre ;
Sanchez Perez-Grueso, Francisco Javier ;
Kleinstuck, Frank S. ;
Obeid, Ibrahim ;
Vila-Casademunt, Alba ;
Burton, Douglas C. ;
Lafage, Virginie ;
Schwab, Frank J. ;
Shaffrey, Christopher I. ;
Bess, Shay ;
Serra-Burriel, Miquel .
SPINE, 2019, 44 (16) :1144-1153
[3]   Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning [J].
Arvind, Varun ;
Kim, Jun S. ;
Oermann, Eric K. ;
Kaji, Deepak ;
Cho, Samuel K. .
NEUROSPINE, 2018, 15 (04) :329-337
[4]   Logistic regression and artificial neural network classification models: a methodology review [J].
Dreiseitl, S ;
Ohno-Machado, L .
JOURNAL OF BIOMEDICAL INFORMATICS, 2002, 35 (5-6) :352-359
[5]   Artificial Intelligence Models Predict Operative Versus Nonoperative Management of Patients with Adult Spinal Deformity with 86% Accuracy [J].
Durand, Wesley M. ;
Daniels, Alan H. ;
Hamilton, David K. ;
Passias, Peter ;
Kim, Han Jo ;
Protopsaltis, Themistocles ;
LaFage, Virginie ;
Smith, Justin S. ;
Shaffrey, Christopher ;
Gupta, Munish ;
Klineberg, Eric ;
Schwab, Frank ;
Burton, Doug ;
Bess, Shay ;
Ames, Christopher ;
Hart, Robert .
WORLD NEUROSURGERY, 2020, 141 :E239-E253
[6]   Predictive Modeling for Blood Transfusion After Adult Spinal Deformity Surgery A Tree-Based Machine Learning Approach [J].
Durand, Wesley M. ;
DePasse, John Mason ;
Daniels, Alan H. .
SPINE, 2018, 43 (15) :1058-1066
[7]   Artificial intelligence predicts disk re-herniation following lumbar microdiscectomy: development of the "RAD" risk profile [J].
Harada, Garrett K. ;
Siyaji, Zakariah K. ;
Mallow, G. Michael ;
Hornung, Alexander L. ;
Hassan, Fayyazul ;
Basques, Bryce A. ;
Mohammed, Haseeb A. ;
Sayari, Arash J. ;
Samartzis, Dino ;
An, Howard S. .
EUROPEAN SPINE JOURNAL, 2021, 30 (08) :2167-2175
[8]   Machine Learning for the Prediction of Cervical Spondylotic Myelopathy: A Post Hoc Pilot Study of 28 Participants [J].
Hopkins, Benjamin S. ;
Weber, Kenneth A., II ;
Kesavabhotla, Kartik ;
Paliwal, Monica ;
Cantrell, Donald R. ;
Smith, Zachary A. .
WORLD NEUROSURGERY, 2019, 127 :E436-E442
[9]   Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients [J].
Hopkins, Benjamin S. ;
Yamaguchi, Jonathan T. ;
Garcia, Roxanna ;
Kesavabhotla, Kartik ;
Weiss, Hannah ;
Hsu, Wellington K. ;
Smith, Zachary A. ;
Dahdaleh, Nader S. .
JOURNAL OF NEUROSURGERY-SPINE, 2020, 32 (03) :399-406
[10]   Artificial intelligence in spine care: current applications and future utility [J].
Hornung, Alexander L. ;
Hornung, Christopher M. ;
Mallow, G. Michael ;
Barajas, J. Nicolas ;
Rush, Augustus, III ;
Sayari, Arash J. ;
Galbusera, Fabio ;
Wilke, Hans-Joachim ;
Colman, Matthew ;
Phillips, Frank M. ;
An, Howard S. ;
Samartzis, Dino .
EUROPEAN SPINE JOURNAL, 2022, 31 (08) :2057-2081