Complex dynamics of a sub-quadratic Lorenz-like system

被引:3
|
作者
Li, Zhenpeng [1 ]
Ke, Guiyao [2 ,3 ]
Wang, Haijun [1 ]
Pan, Jun [4 ]
Hu, Feiyu [5 ]
Su, Qifang [1 ]
机构
[1] Taizhou Univ, Sch Elect & Informat Engn, Sch Big Data Sci, Taizhou 318000, Zhejiang, Peoples R China
[2] Zhejiang Guangsha Vocat & Tech Univ Construct, Sch Informat, Dongyang 322100, Zhejiang, Peoples R China
[3] GongQing Inst Sci & Technol, Sch Informat Engn, Gongqingcheng 332020, Peoples R China
[4] Zhejiang Univ Sci & Technol, Sch Sci, Dept Big Data Sci, Hangzhou 310023, Peoples R China
[5] Ritsumeikan Asia Pacific Univ, Coll Sustainabil & Tourism, Beppu, Oita 8748577, Japan
来源
OPEN PHYSICS | 2023年 / 21卷 / 01期
基金
中国国家自然科学基金;
关键词
sub-quadratic Lorenz-like system; globally exponentially attractive set; homoclinic orbit; heteroclinic orbit; Lyapunov function; CIRCULAR 3-BODY PROBLEM; HETEROCLINIC CONNECTIONS; PERIODIC-ORBITS;
D O I
10.1515/phys-2022-0251
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by the generic dynamical property of most quadratic Lorenz-type systems that the unstable manifolds of the origin tending to the stable manifold of nontrivial symmetrical equilibria forms a pair of heteroclinic orbits, this technical note reports a new 3D sub-quadratic Lorenz-like system: (x)over dot = a (y - x), (y)over dot = c(3)root X + dy - (3)root XZ and (z)over dot = -bz + (3)root xy. Instead, the unstable manifolds of nontrivial symmetrical equilibria tending to the stable manifold of the origin creates a pair of heteroclinic orbits. This drives one to further investigate it and reveal its other hidden dynamics: Hopf bifurcation, invariant algebraic surfaces, ultimate bound sets, globally exponentially attractive sets, existence of homoclinic and heteroclinic orbits, singularly degenerate heteroclinic cycles, and so on. The main contributions of this work are summarized as follows: First, the ultimate boundedness of that system yields the globally exponentially attractive sets of it. Second, the existence of another heteroclinic orbits is also proved by utilizing two different Lyapunov functions. Finally, on the invariant algebraic surface z = 3/4a (3)root X-4, the existence of a pair of homoclinic orbits to the origin, and two pairs of heteroclinic orbits to two pairs of nontrivial symmetrical equilibria is also proved by utilizing a Hamiltonian function. In addition, the correctness of the theoretical results is illustrated via numerical examples.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dynamics of a New Four-Thirds-Degree Sub-Quadratic Lorenz-like System
    Ke, Guiyao
    Pan, Jun
    Hu, Feiyu
    Wang, Haijun
    AXIOMS, 2024, 13 (09)
  • [2] Two pairs of heteroclinic orbits coined in a new sub-quadratic Lorenz-like system
    Wang, Haijun
    Ke, Guiyao
    Pan, Jun
    Hu, Feiyu
    Fan, Hongdan
    Su, Qifang
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (03):
  • [3] Two pairs of heteroclinic orbits coined in a new sub-quadratic Lorenz-like system
    Haijun Wang
    Guiyao Ke
    Jun Pan
    Feiyu Hu
    Hongdan Fan
    Qifang Su
    The European Physical Journal B, 2023, 96
  • [4] Revealing More Hidden Attractors from a New Sub-Quadratic Lorenz-Like System of Degree 6/5
    Wang, Haijun
    Pan, Jun
    Ke, Guiyao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (06):
  • [5] Dynamics of a new Lorenz-like chaotic system
    Liu, Yongjian
    Yang, Qigui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2563 - 2572
  • [6] Singular Orbits and Dynamics at Infinity of a Conjugate Lorenz-Like System
    Geng, Fengjie
    Li, Xianyi
    MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (02) : 148 - 167
  • [7] Nonlinear analysis in a Lorenz-like system
    Dias, Fabio Scalco
    Mello, Luis Fernando
    Zhang, Jian-Gang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 3491 - 3500
  • [8] Fresh Look at Lorenz-like System
    Nguyen, Hang T. T.
    Meleshenko, Peter A.
    Semenov, Mikhail E.
    Kuznetsov, Ilya E.
    Gorlov, Vladimir A.
    Klinskikh, Alexander F.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2255 - 2259
  • [9] APPLIED SYMBOLIC DYNAMICS FOR THE LORENZ-LIKE MAP
    ZHENG, WM
    PHYSICAL REVIEW A, 1990, 42 (04): : 2076 - 2080
  • [10] Lorenz-like systems and Lorenz-like attractors: Definition, examples, and equivalences
    Letellier, Christophe
    Mendes, Eduardo M. A. M.
    Malasoma, Jean-Marc
    PHYSICAL REVIEW E, 2023, 108 (04)