A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems

被引:5
作者
Yi, Huaming [1 ]
Chen, Yanping [2 ]
Wang, Yang [3 ]
Huang, Yunqing [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金;
关键词
Two -grid method; Immersed finite element; Parabolic interface problem; Crank-Nicolson scheme; MISCIBLE DISPLACEMENT PROBLEMS; LOCALIZED ADJOINT METHOD; COUPLING FLUID-FLOW; POROUS-MEDIA; ELECTROMAGNETIC-WAVES; DIFFUSION-EQUATIONS; APPROXIMATION; CONVERGENCE; MODEL; FEM;
D O I
10.1016/j.apnum.2023.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a new two-grid partially penalized immersed finite element method for solving the semilinear parabolic interface problems with meshes independent of the coefficient discontinuity. Based on the corresponding time-discrete system, we can unconditionally derive the optimal error estimates in both the L2 norm and semi-H1 norm, while previous works always require the coupling condition of time step and space size (e.g. condition & tau; = O(H)). Then, we design a two-grid algorithm based on Newton iteration to deal with nonlinear source term. It is shown, both theoretically and numerically, that the algorithm can achieve asymptotically optimal approximation in L2 norm (or semi-H1 norm) when the mesh size satisfies H = O(h3/2) (or H = O(h3)). & COPY; 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 55 条
  • [1] An immersed discontinuous finite element method for Stokes interface problems
    Adjerid, Slimane
    Chaabane, Nabil
    Lin, Tao
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 : 170 - 190
  • [2] Attanayake C., 2011, Appl. Math. Sci., V5, P135
  • [3] Babuska I, 2000, MATH COMPUT, V69, P443, DOI 10.1090/S0025-5718-99-01085-6
  • [4] A finite element method for interface problems in domains with smooth boundaries and interfaces
    Bramble, JH
    King, JT
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) : 109 - 138
  • [5] CutFEM: Discretizing geometry and partial differential equations
    Burman, Erik
    Claus, Susanne
    Hansbo, Peter
    Larson, Mats G.
    Massing, Andre
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) : 472 - 501
  • [6] Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method
    Burman, Erik
    Hansbo, Peter
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 328 - 341
  • [7] NUMERICAL SOLUTION TO A MIXED NAVIER-STOKES/DARCY MODEL BY THE TWO-GRID APPROACH
    Cai, Mingchao
    Mu, Mo
    Xu, Jinchao
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3325 - 3338
  • [8] Immersed finite element approximation for semi-linear parabolic interface problems combining with two-grid methods
    Chen, Yanping
    Yi, Huaming
    Wang, Yang
    Huang, Yunqing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 175 : 56 - 72
  • [9] Two-grid methods of finite element solutions for semi-linear elliptic interface problems
    Chen, Yanping
    Li, Qingfeng
    Wang, Yang
    Huang, Yunqing
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (01) : 307 - 330
  • [10] Finite element methods and their convergence for elliptic and parabolic interface problems
    Chen, ZM
    Zou, J
    [J]. NUMERISCHE MATHEMATIK, 1998, 79 (02) : 175 - 202