MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes

被引:71
作者
Reiser, Christian [1 ,2 ]
Szeliski, Richard [3 ]
Verbin, Dor [4 ]
Srinivasan, Pratul P. [5 ]
Mildenhall, Ben [5 ]
Geiger, Andreas [1 ]
Barron, Jonathan T. [5 ]
Hedman, Peter [2 ]
机构
[1] Univ Tubingen, Tubingen AI Ctr, Tubingen, Germany
[2] Google Res, London, England
[3] Google Res, Seattle, WA USA
[4] Google Res, Boston, MA USA
[5] Google Res, San Francisco, CA USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 04期
基金
欧洲研究理事会;
关键词
Neural Radiance Fields; Volumetric Representation; Image Synthesis; Real-Time Rendering; Deep Learning;
D O I
10.1145/3592426
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Neural radiance fields enable state-of-the-art photorealistic view synthesis. However, existing radiance field representations are either too compute-intensive for real-time rendering or require too much memory to scale to large scenes. We present a Memory-Efficient Radiance Field (MERF) representation that achieves real-time rendering of large-scale scenes in a browser. MERF reduces the memory consumption of prior sparse volumetric radiance fields using a combination of a sparse feature grid and high-resolution 2D feature planes. To support large-scale unbounded scenes, we introduce a novel contraction function that maps scene coordinates into a bounded volume while still allowing for efficient ray-box intersection. We design a lossless procedure for baking the parameterization used during training into a model that achieves real-time rendering while still preserving the photorealistic view synthesis quality of a volumetric radiance field.
引用
收藏
页数:12
相关论文
共 65 条
[1]  
Aliaga DG, 2002, VIS 2002: IEEE VISUALIZATION 2002, PROCEEDINGS, P331, DOI 10.1109/VISUAL.2002.1183792
[2]  
Attal B., 2020, ECCV, P441, DOI DOI 10.1007/978-3-030-58452-8_26
[3]  
Attal Benjamin, 2022, CVPR
[4]   Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields [J].
Barron, Jonathan T. ;
Mildenhall, Ben ;
Verbin, Dor ;
Srinivasan, Pratul P. ;
Hedman, Peter .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5460-5469
[5]  
Bengio Y, 2013, Arxiv, DOI arXiv:1308.3432
[6]   Immersive Light Field Video with a Layered Mesh Representation [J].
Broxton, Michael ;
Flynn, John ;
Overbeck, Ryan ;
Erickson, Daniel ;
Hedman, Peter ;
Duvall, Matthew ;
Dourgarian, Jason ;
Busch, Jay ;
Whalen, Matt ;
Debevec, Paul .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04)
[7]  
Buehler C, 2001, COMP GRAPH, P425, DOI 10.1145/383259.383309
[8]  
Cao J., 2023, CVPR
[9]   Efficient Geometry-aware 3D Generative Adversarial Networks [J].
Chan, Eric R. ;
Lin, Connor Z. ;
Chan, Matthew A. ;
Nagano, Koki ;
Pan, Boxiao ;
de Mello, Shalini ;
Gallo, Orazio ;
Guibas, Leonidas ;
Tremblay, Jonathan ;
Khamis, Sameh ;
Karras, Tero ;
Wetzstein, Gordon .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16102-16112
[10]  
Chaurasia Gaurav, 2013, T GRAPHICS