The Hasse principle for random Fano hypersurfaces

被引:0
作者
Browning, Tim [1 ]
Le Boudec, Pierre [2 ]
Sawin, Will [3 ]
机构
[1] IST Austria, Klosterneuburg, Austria
[2] Univ Basel, Dept Math & Informat, Fachbereich Math, Basel, Switzerland
[3] Columbia Univ, New York, NY USA
基金
英国工程与自然科学研究理事会;
关键词
Hasse principle; Fano hypersurfaces; rational points; heights; RATIONAL-POINTS; HEIGHT; NUMBER; FORMS;
D O I
10.4007/annals.2023.197.3.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the Brauer-Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least 3 over any number field. Moreover, for such varieties it follows from a general con-jecture of Colliot-The ' le`ne that the Brauer-Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hy-persurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the di-mension is at least 3. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces.
引用
收藏
页码:1115 / 1203
页数:89
相关论文
共 20 条
[1]  
[Anonymous], 1959, An Introduction to the Geometry of Numbers, P234, DOI DOI 10.1007/978-3-642-62035-5
[2]   NEW BOUNDS IN SOME TRANSFERENCE THEOREMS IN THE GEOMETRY OF NUMBERS [J].
BANASZCZYK, W .
MATHEMATISCHE ANNALEN, 1993, 296 (04) :625-635
[3]   Counting Lattice Points and O-Minimal Structures [J].
Barroero, Fabrizio ;
Widmer, Martin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (18) :4932-4957
[4]  
Bhargava M, 2014, Arxiv, DOI arXiv:1402.1131
[6]   Height of rational points on random Fano hypersurfaces [J].
Boudec, Pierre Le .
ALGEBRA & NUMBER THEORY, 2021, 15 (03) :657-672
[7]  
Broberg N, 2004, PROG MATH, V226, P105
[8]   NORM FORMS FOR ARBITRARY NUMBER FIELDS AS PRODUCTS OF LINEAR POLYNOMIALS [J].
Browning, Tim D. ;
Matthiesen, Lilian .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2017, 50 (06) :1383-1446
[9]   Random Diophantine equations, I [J].
Bruedern, Joerg ;
Dietmann, Rainer .
ADVANCES IN MATHEMATICS, 2014, 256 :18-45
[10]  
Cassels J.W.S., 1956, P CAMBRIDGE PHILOS S, V52, P602, DOI DOI 10.1017/S0305004100031625