Solvability of a fluid-structure interaction problem with semigroup theory

被引:3
|
作者
Krier, Maxime [1 ]
Orlik, Julia [1 ]
机构
[1] Fraunhofer ITWM, Dept Flow & Mat Simulat, D-67663 Kaiserslautern, Germany
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 12期
关键词
fluid-structure interaction; asymptotic analysis; homogenization; dimension reduction; semigroup theory; LIMIT BEHAVIOR; FLOW; SIEVE;
D O I
10.3934/math.20231510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Continuous semigroup theory is applied to proof the existence and uniqueness of a solution to a fluid-structure interaction (FSI) problem of non-stationary Stokes flow in two bulk domains, separated by a 2D elastic, permeable plate. The plate's curvature is proportional to the jump of fluid stresses across the plate and the flow resistance is modeled by Darcy's law. In the weak formulation of the considered physical problem, a linear operator in space is associated with a sum of two bilinear forms on the fluid and the interface domains, respectively. One attains a system of equations in operator form, corresponding to the weak problem formulation. Utilizing the sufficient conditions in the Lumer-Phillips theorem, we show that the linear operator is a generator of a contraction semigroup, and give the existence proof to the FSI problem.
引用
收藏
页码:29490 / 29516
页数:27
相关论文
共 50 条
  • [41] Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics
    Nobile, Fabio
    Vergara, Christian
    MILAN JOURNAL OF MATHEMATICS, 2012, 80 (02) : 443 - 467
  • [42] Development and Verification of Coupled Fluid-Structure Interaction Solver
    Schemmel, Avery
    Palakurthy, Seshendra
    Zope, Anup
    Collins, Eric
    Bhushan, Shanti
    COMPUTATION, 2024, 12 (06)
  • [43] Truly monolithic algebraic multigrid for fluid-structure interaction
    Gee, M. W.
    Kuettler, U.
    Wall, W. A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (08) : 987 - 1016
  • [44] Experiment for validation of fluid-structure interaction models and algorithms
    Hessenthaler, A.
    Gaddum, N. R.
    Holub, O.
    Sinkus, R.
    Roehrle, O.
    Nordsletten, D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2017, 33 (09)
  • [45] Immersed Methods for Fluid-Structure Interaction
    Griffith, Boyce E.
    Patankar, Neelesh A.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 52, 2020, 52 : 421 - 448
  • [46] New Advances in Fluid-Structure Interaction
    Chen, Wenli
    Yang, Zifeng
    Hu, Gang
    Jing, Haiquan
    Wang, Junlei
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [47] Fluid-structure interaction with applications in biomechanics
    Hron, Jaroslav
    Madlik, Martin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (05) : 1431 - 1458
  • [48] An optimal principle in fluid-structure interaction
    Chung, Bong Jae
    Vaidya, Ashwin
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2945 - 2951
  • [49] Parallel Fluid-Structure Interaction Simulation
    Chen, Meng-Huo
    COMPUTATIONAL SCIENCE, ICCS 2022, PT IV, 2022, : 297 - 309
  • [50] Fluid-structure interaction in civil engineering
    Rank, E
    Scholz, D
    Halfmann, A
    Glück, M
    Breuer, M
    Durst, F
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1488 - 1491