A Catalytic Electrolyte Additive Modulating Molecular Orbital Energy Levels of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries

被引:8
|
作者
Liu, Jing [1 ]
Zhou, Yuhao [1 ]
Xiao, Zhenxue [1 ]
Ren, Xiaozhe [1 ]
Liu, Sheng [1 ]
Yan, Tianying [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur battery; electrolyteadditive; electrocatalysis; molecular orbital energylevel; redox kinetics; REDOX; LI2S; CONVERSION; OXIDATION; DENSITY; SURFACE;
D O I
10.1021/acsami.3c10163
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-sulfur (Li-S) batteries have ultrahigh theoretical specific capacity, but the practical application is hindered by the severe shuttle effect and the sluggish redox kinetics of the intermediate lithium polysulfides (LiPSs). Effectively enhancing the conversion kinetics of LiPSs is essential for addressing these issues. Herein, the redox kinetics of LiPSs are effectively improved by introducing 6-azauracil (6-AU) molecules to the organic electrolyte to modulate the molecular orbital energy level of LiPSs. The 6-AU as a soluble catalyst can form complexes with LiPSs via Li-O bonds. These complexes are liable to transform because of the elevated HOMO and the reduced LUMO energy levels as compared to the dissociative LiPSs, resulting in small energy gaps (E-gap) and exhibiting stronger redox activity. Benefiting from the rapid conversion kinetics, the shuttling effect of LiPSs is alleviated to a great extent, so that sulfur utilization is improved and the lithium electrode is protected. In addition, the introduction of 6-AU modulates the deposition behavior of Li2S and eases the coverage of the cathode surface by the insulating Li2S layer. The Li-S battery containing 6-AU provides superior capacity retention of 853 mAh g(-1) after 150 cycles at 0.2 C and shows remarkable high-rate performance and retains a specific discharge capacity of 855 mAh g(-1) at 5 C. This study accelerates the kinetics of Li-S batteries by tuning the HOMO and LUMO energy levels of LiPSs, which opens an avenue for designing functional electrolyte additives.
引用
收藏
页码:55608 / 55619
页数:12
相关论文
共 50 条
  • [21] Effective chemisorption of polysulfides through organic molecules for high-performance lithium-sulfur batteries
    Liu, Jing
    Xue, Mengyuan
    Zhou, Yuhao
    Liu, Sheng
    Yan, Tianying
    CHEMICAL ENGINEERING JOURNAL, 2023, 459
  • [22] Catalytic conversion of polysulfides by atomic layer deposition derived titanium nitride for high-performance lithium-sulfur batteries
    Nizami, Ameer
    Yang, Zhao
    Deng, Sixu
    Li, Ruying
    Li, Xia
    Sun, Xueliang
    ELECTROCHEMICAL SCIENCE ADVANCES, 2024, 4 (02):
  • [23] Local charge rearrangement to boost the chemical adsorption and catalytic conversion of polysulfides for high-performance lithium-sulfur batteries
    Zhao, Tongkun
    Chen, Junwu
    Yuan, Menglei
    Dai, Kaiqing
    Zhang, Jingxian
    Li, Shuwei
    He, Hongyan
    Liu, Zhanjun
    Zhang, Guangjin
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (12) : 7566 - 7574
  • [24] Poreless Separator and Electrolyte Additive for Lithium-Sulfur Batteries with High Areal Energy Densities
    Kim, Joo-Seong
    Yoo, Dong-Joo
    Min, Jaeyun
    Shakoor, Rana A.
    Kahraman, Ramazan
    Choi, Jang Wook
    CHEMNANOMAT, 2015, 1 (04): : 240 - 245
  • [25] CuS quantum dot modified carbon aerogel as an immobilizer for lithium polysulfides for high-performance lithium-sulfur batteries
    Li, Xueliang
    Hu, Kuan
    Tang, Ruwen
    Zhao, Kun
    Ding, Yunsheng
    RSC ADVANCES, 2016, 6 (75): : 71319 - 71327
  • [26] The Fundamental Understanding of Lithium Polysulfides in Ether-Based Electrolyte for Lithium-Sulfur Batteries
    Zhang, Bohai
    Wu, Junfeng
    Gu, Jiankang
    Li, Shu
    Yan, Tianying
    Gao, Xue-Ping
    ACS ENERGY LETTERS, 2021, 6 (02) : 537 - 546
  • [27] Multifunctional Sandwich-Structured Electrolyte for High-Performance Lithium-Sulfur Batteries
    Qu, Hongtao
    Zhang, Jianjun
    Du, Aobing
    Chen, Bingbing
    Chai, Jingchao
    Xue, Nan
    Wang, Longlong
    Qiao, Lixin
    Wang, Chen
    Zang, Xiao
    Yang, Jinfeng
    Wang, Xiaogang
    Cui, Guanglei
    ADVANCED SCIENCE, 2018, 5 (03):
  • [28] A gel polymer electrolyte functionalized separator for high-performance lithium-sulfur batteries
    Fang, Zhan
    Tan, Jian
    Ma, Longli
    Yi, Pengshu
    Lu, Wenyi
    Xu, Yuyu
    Ye, Mingxin
    Shen, Jianfeng
    NANOSCALE, 2024, 16 (38) : 17934 - 17941
  • [29] Thiol-based electrolyte additives for high-performance lithium-sulfur batteries
    Wu, Heng-Liang
    Shin, Minjeong
    Liu, Yao-Min
    See, Kimberly A.
    Gewirth, Andrew A.
    NANO ENERGY, 2017, 32 : 50 - 58
  • [30] Catalytic FeP decorated carbon black as a multifunctional conducting additive for high-performance lithium-sulfur batteries
    Xia, Guang
    Ye, Jiajia
    Zheng, Zhiqiang
    Li, Xuting
    Chen, Chuanzhong
    Hu, Cheng
    CARBON, 2021, 172 : 96 - 105