Improved YOLOv5 UAV Target Detection Algorithm by Fused Attention Mechanism

被引:0
作者
He, Yan Y. H. [1 ]
Zhao, Yanni Y. N. Z. [1 ]
Nie, Hongfei Hfn [2 ]
机构
[1] Shanghai Normal Univ, Tianhua Coll, AI Sch, 1661 North Sheng Xin Rd, Shanghai, Peoples R China
[2] Shanghai Microelect Equipment Grp Co Ltd, Applicat Engn Dept Special Prod, Shanghai, Peoples R China
来源
2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023 | 2023年
关键词
UAV target detection; multi-scale feature pyramid; YOLOv5; Coordinate Attention;
D O I
10.1145/3590003.3590074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a modified YOLOv5 UAV target detection algorithm for the low detection accuracy caused by the dense target distribution and too small size in the UAV image. Firstly, the coordinate attention mechanism (Coordinate Attention, CA) is introduced in the backbone network CSPDarknet53 to enhance the feature extraction capability of the network; secondly, the multi-size feature pyramid network is designed to introduce a larger resolution feature map for feature fusion and prediction, and to improve the accuracy of small target detection. Experiments on the VisDrone2021 dataset, the results show that the average detection accuracy (Mean Average Precision, mAP) of the improved YOLOv5 algorithm reached 43.0%, 5.8 percentage points higher than the original algorithm, which fully proves the high efficiency of the proposed improved algorithm on the ground target detection of the UAV.
引用
收藏
页码:382 / 388
页数:7
相关论文
共 21 条
  • [1] Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
  • [2] VisDrone-DET2021: The Vision Meets Drone Object detection Challenge Results
    Cao, Yaru
    He, Zhijian
    Wang, Lujia
    Wang, Wenguan
    Yuan, Yixuan
    Zhang, Dingwen
    Zhang, Jinglin
    Zhu, Pengfei
    Van Gool, Luc
    Han, Junwei
    Hoi, Steven
    Hu, Qinghua
    Liu, Ming
    Cheng, Chong
    Liu, Fanfan
    Cao, Guojin
    Li, Guozhen
    Wang, Hongkai
    He, Jianye
    Wan, Junfeng
    Wan, Qi
    Zhao, Qi
    Lyu, Shuchang
    Zhao, Wenzhe
    Lu, Xiaoqiang
    Zhu, Xingkui
    Liu, Yingjie
    Lv, Yixuan
    Ma, Yujing
    Yang, Yuting
    Wang, Zhe
    Xu, Zhenyu
    Luo, Zhipeng
    Zhang, Zhimin
    Zhang, Zhiguang
    Li, Zihao
    Zhang, Zixiao
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2847 - 2854
  • [3] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [4] Rich feature hierarchies for accurate object detection and semantic segmentation
    Girshick, Ross
    Donahue, Jeff
    Darrell, Trevor
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 580 - 587
  • [5] He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
  • [6] Coordinate Attention for Efficient Mobile Network Design
    Hou, Qibin
    Zhou, Daquan
    Feng, Jiashi
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13708 - 13717
  • [7] Jianxiu Yang, 2021, Signal processing, P1
  • [8] Jun Ma, 2021, Computer Application, P1
  • [9] Focal Loss for Dense Object Detection
    Lin, Tsung-Yi
    Goyal, Priya
    Girshick, Ross
    He, Kaiming
    Dollar, Piotr
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2999 - 3007
  • [10] Microsoft COCO: Common Objects in Context
    Lin, Tsung-Yi
    Maire, Michael
    Belongie, Serge
    Hays, James
    Perona, Pietro
    Ramanan, Deva
    Dollar, Piotr
    Zitnick, C. Lawrence
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 740 - 755