DETERMINATION FOR THE 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN LIPSCHITZ DOMAIN

被引:0
|
作者
Yang, Xin-Guang [1 ]
Hu, Meng [1 ]
Ma, To Fu [2 ]
Yuan, Jinyun [1 ,3 ]
机构
[1] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[3] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Lipschitz domain; determining modes; Grashof number; DETERMINING MODES; DIRICHLET PROBLEM; VOLUME ELEMENTS; DIMENSION; DYNAMICS; SYSTEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number of determining modes is estimated for the 2D Navier-Stokes equations subject to an inhomogeneous boundary condition in Lipschitz domains by using an appropriate set of points in the configuration space to represent the flow by virtue of the Grashof number and the measure of Lipschitz boundary based on a stream function and some delicate estimates. The asymptotic determination via finite functionals for 2D autonomous Navier-Stokes equations in Lipschitz domains has been derived for the trajectories inside global attractor with finite Hausdorff dimension, which leads to this fluid flow reducing to a functional ordinary differential equation.
引用
收藏
页码:2301 / 2328
页数:28
相关论文
共 50 条
  • [1] Asymptotic Stability for the 2D Navier-Stokes Equations with Multidelays on Lipschitz Domain
    Zhang, Ling-Rui
    Yang, Xin-Guang
    Su, Ke-Qin
    MATHEMATICS, 2022, 10 (23)
  • [2] Robustness of Pullback Attractors for 2D Incompressible Navier-Stokes Equations with Delay
    Su, Keqin
    Yang, Xinguang
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (01): : 25 - 46
  • [3] DYNAMICS OF THE 2D NAVIER-STOKES EQUATIONS WITH SUBLINEAR OPERATORS IN LIPSCHITZ-LIKE DOMAINS
    Yang, Xin-Guang
    Wang, Rong-Nian
    Yan, Xingjie
    Miranville, Alain
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (07) : 3343 - 3366
  • [4] CONVERGENCE OF A MOBILE DATA ASSIMILATION SCHEME FOR THE 2D NAVIER-STOKES EQUATIONS
    Biswas, Animikh
    Bradshaw, Zachary
    Jolly, Michael
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, : 4042 - 4068
  • [5] Enstrophy dissipation and vortex thinning for the incompressible 2D Navier-Stokes equations
    Jeong, In-Jee
    Yoneda, Tsuyoshi
    NONLINEARITY, 2021, 34 (04) : 1837 - 1853
  • [6] MULTILEVEL FINITE VOLUME METHODS FOR 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Djoko, J. K.
    Gidey, H. H.
    Reddy, B. D.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (04) : 485 - 516
  • [7] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1999, 127 (04): : 473 - 517
  • [8] Dynamics and robustness for the 2D Navier-Stokes equations with multi-delays in Lipschitz-like domains
    Su, Keqin
    Yang, Xin-Guang
    Miranville, Alain
    Yang, He
    ASYMPTOTIC ANALYSIS, 2023, 134 (03) : 513 - 552
  • [9] Hyperbolic relaxation of the 2D Navier-Stokes equations in a bounded domain
    Ilyin, Alexei
    Rykov, Yuri
    Zelik, Sergey
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 171 - 179
  • [10] 2D constrained Navier-Stokes equations
    Brzezniak, Zdzislaw
    Dhariwal, Gaurav
    Mariani, Mauro
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2833 - 2864