FAST QTMT PARTITION FOR VVC INTRA CODING USING U-NET FRAMEWORK

被引:3
|
作者
Zan, Zhao [1 ]
Huang, Leilei [2 ]
Chen, ShuShi [1 ]
Zhang, Xiantao [3 ]
Zhao, Zhenghui [3 ]
Yin, Haibing [4 ]
Fan, Yibo [1 ]
机构
[1] Fudan Univ, Shanghai, Peoples R China
[2] East China Normal Univ, Shanghai, Peoples R China
[3] Alibaba Grp, Hangzhou, Peoples R China
[4] Hangzhou Dianzi Univ, Hangzhou, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
基金
中国国家自然科学基金;
关键词
VVC; intra coding; U-Net; complexity; DECISION; NETWORK;
D O I
10.1109/ICIP49359.2023.10221979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Versatile Video Coding (VVC) has significantly increased encoding efficiency at the expense of numerous complex coding tools, particularly the flexible Quad-Tree plus Multi-type Tree (QTMT) block partition. This paper proposes a deep learning-based algorithm applied in fast QTMT partition for VVC intra coding. Our solution greatly reduces encoding time by early termination of less-likely intra prediction and partitions with negligible BD-BR increase. Firstly, a redesigned U-Net is recommended as the network's fundamental framework. Next, we design a Quality Parameter (QP) fusion network to regulate the effect of QPs on the partition results. Finally, we adopt a refined post-processing strategy to better balance encoding performance and complexity. Experimental results demonstrate that our solution outperforms the state-of-the-art works with a complexity reduction of 44.74% to 68.76% and a BD-BR increase of 0.60% to 2.33%.
引用
收藏
页码:600 / 604
页数:5
相关论文
共 50 条
  • [41] LEA U-Net: a U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation
    Ouyang, Jihong
    Liu, Siguang
    Peng, Hao
    Garg, Harish
    Thanh, Dang N. H.
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6753 - 6766
  • [42] Infrared Small Object Detection Using Deep Interactive U-Net
    Wu, Xin
    Hong, Danfeng
    Huang, Zhanchao
    Chanussot, Jocelyn
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] Retinal vessel segmentation using dense U-net with multiscale inputs
    Yue, Kejuan
    Zou, Beiji
    Chen, Zailiang
    Liu, Qing
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (03)
  • [44] PARSE CHALLENGE 2022: PULMONARY ARTERIES SEGMENTATION USING SWIN U-NET TRANSFORMER(SWIN UNETR) AND U-NET
    Padhy, Rohan
    Maurya, Akansh
    Patil, Kunal Dasharath
    Ramakrishna, Kalluri
    Krishnamurthi, Ganapathy
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [45] An Online SVM Based VVC Intra Fast Partition Algorithm With Pre-Scene-cut Detection
    Shu, Chao
    Yang, Chao
    An, Ping
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 3033 - 3037
  • [46] Fast and Accurate U-Net Model for Fetal Ultrasound Image Segmentation
    Chenarlogh, Vahid Ashkani
    Oghli, Mostafa Ghelich
    Shabanzadeh, Ali
    Sirjani, Nasim
    Akhavan, Ardavan
    Shiri, Isaac
    Arabi, Hossein
    Shabanzadeh, Zahra
    Taheri, Morteza Sanei
    Tarzamni, Mohammad Kazem
    ULTRASONIC IMAGING, 2022, 44 (01) : 25 - 38
  • [47] Medical Image Segmentation Using U-Net and Progressive Neuron Expansion
    Paheding, Sidike
    Reyes, Abel A.
    Alam, Mohammad
    Asari, Vijayan K.
    PATTERN RECOGNITION AND TRACKING XXXIII, 2022, 12101
  • [48] A fast CU partition and mode decision algorithm for HEVC intra coding
    Liao, Weihang
    Chen, Zhenzhong
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 67 : 140 - 148
  • [49] Convective Precipitation Nowcasting Using U-Net Model
    Han, Lei
    Liang, He
    Chen, Haonan
    Zhang, Wei
    Ge, Yurong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [50] Brain Tumour Segmentation Using Probabilistic U-Net
    Savadikar, Chinmay
    Kulhalli, Rahul
    Garware, Bhushan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 255 - 264