META LEARNING-BASED APPROACH FOR FEW-SHOT TARGET RECOGNITION IN ISAR IMAGES

被引:2
|
作者
Jin, Jing [1 ]
Wang, Feng [1 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Key Lab Informat Sci Electromagnet Waves, MoE, Shanghai 200433, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Target recognition; ISAR; Few-Shot Learning; Meta-Learning; Learning Gain;
D O I
10.1109/IGARSS52108.2023.10282574
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Rapidly evolving deep learning methods have yielded remarkable performance in Inverse Synthetic Aperture Radar (ISAR) target recognition. However, training deep neural networks often requires large-scale annotated datasets. Due to the scarcity of ISAR images, it is challenging to obtain sufficient well-labeled ISAR datasets. Therefore, this paper considers Few-Shot scenarios and investigates the fast learning and generalization of the model via a Meta-Learning framework. The simulated experimental results illustrate that the Meta-Learning model presented in this paper outperforms traditional Machine Learning method K-Nearest Neighbor (KNN) in terms of testing accuracy, achieving a 72.79% improvement in 5-way 6-shot tasks. In addition, we propose Learning Gain as a criterion to measure the learning ability of the model.
引用
收藏
页码:6438 / 6441
页数:4
相关论文
共 50 条
  • [41] Imbalanced Few-Shot Learning Based on Meta-transfer Learning
    Chu, Yan
    Sun, Xianghui
    Jiang Songhao
    Xie, Tianwen
    Wang, Zhengkui
    Shan, Wen
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 357 - 369
  • [42] Multimodal Few-Shot Learning for Gait Recognition
    Moon, Jucheol
    Nhat Anh Le
    Minaya, Nelson Hebert
    Choi, Sang-Il
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 15
  • [43] Learning Compositional Representations for Few-Shot Recognition
    Tokmakov, Pavel
    Wang, Yu-Xiong
    Hebert, Martial
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6381 - 6390
  • [44] A Two-Stage Approach to Few-Shot Learning for Image Recognition
    Das, Debasmit
    Lee, C. S. George
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 3336 - 3350
  • [45] MetaFSCEL A Meta-Learning Approach for Few-Shot Class Incremental Learning
    Chi, Zhixiang
    Gu, Li
    Liu, Huan
    Wang, Yang
    Yu, Yuanhao
    Tang, Jin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14146 - 14155
  • [46] Unsupervised meta-learning for few-shot learning
    Xu, Hui
    Wang, Jiaxing
    Li, Hao
    Ouyang, Deqiang
    Shao, Jie
    PATTERN RECOGNITION, 2021, 116
  • [47] Meta-feature based few-shot Siamese learning for Urdu optical character recognition
    Naseer, Asma
    Zafar, Kashif
    COMPUTATIONAL INTELLIGENCE, 2022, 38 (05) : 1707 - 1727
  • [48] Calibrating CNNs for Few-Shot Meta Learning
    Yang, Peng
    Ren, Shaogang
    Zhao, Yang
    Li, Ping
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 408 - 417
  • [49] Meta-Transfer Learning for Few-Shot Learning
    Sun, Qianru
    Liu, Yaoyao
    Chua, Tat-Seng
    Schiele, Bernt
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 403 - 412
  • [50] A Global Model Approach to Robust Few-Shot SAR Automatic Target Recognition
    Inkawhich, Nathan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20