META LEARNING-BASED APPROACH FOR FEW-SHOT TARGET RECOGNITION IN ISAR IMAGES

被引:2
|
作者
Jin, Jing [1 ]
Wang, Feng [1 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Key Lab Informat Sci Electromagnet Waves, MoE, Shanghai 200433, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Target recognition; ISAR; Few-Shot Learning; Meta-Learning; Learning Gain;
D O I
10.1109/IGARSS52108.2023.10282574
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Rapidly evolving deep learning methods have yielded remarkable performance in Inverse Synthetic Aperture Radar (ISAR) target recognition. However, training deep neural networks often requires large-scale annotated datasets. Due to the scarcity of ISAR images, it is challenging to obtain sufficient well-labeled ISAR datasets. Therefore, this paper considers Few-Shot scenarios and investigates the fast learning and generalization of the model via a Meta-Learning framework. The simulated experimental results illustrate that the Meta-Learning model presented in this paper outperforms traditional Machine Learning method K-Nearest Neighbor (KNN) in terms of testing accuracy, achieving a 72.79% improvement in 5-way 6-shot tasks. In addition, we propose Learning Gain as a criterion to measure the learning ability of the model.
引用
收藏
页码:6438 / 6441
页数:4
相关论文
共 50 条
  • [21] Few-Shot Learning on Graph Convolutional Network Based on Meta learning
    Liu X.-L.
    Feng L.
    Liao L.-X.
    Gong X.
    Su H.
    Wang J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (03): : 885 - 897
  • [22] Representation based meta-learning for few-shot spoken intent recognition
    Mittal, Ashish
    Bharadwaj, Samarth
    Khare, Shreya
    Chemmengath, Saneem
    Sankaranarayanan, Karthik
    Kingsbury, Brian
    INTERSPEECH 2020, 2020, : 4283 - 4287
  • [23] Imbalanced Few-Shot Learning Based on Meta-transfer Learning
    Chu, Yan
    Sun, Xianghui
    Jiang Songhao
    Xie, Tianwen
    Wang, Zhengkui
    Shan, Wen
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 357 - 369
  • [24] Unsupervised meta-learning for few-shot learning
    Xu, Hui
    Wang, Jiaxing
    Li, Hao
    Ouyang, Deqiang
    Shao, Jie
    PATTERN RECOGNITION, 2021, 116
  • [25] Few-Shot Classification of Aerial Scene Images via Meta-Learning
    Zhang, Pei
    Bai, Yunpeng
    Wang, Dong
    Bai, Bendu
    Li, Ying
    REMOTE SENSING, 2021, 13 (01) : 1 - 21
  • [26] Few-Shot SAR Target Recognition Method Based on Feature Fusion Attention and Meta-ResNet
    Liu Q.
    Liu Y.-X.
    Zhang X.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (09): : 2366 - 2378
  • [27] Few-Shot Learning for Palmprint Recognition via Meta-Siamese Network
    Shao, Huikai
    Zhong, Dexing
    Du, Xuefeng
    Du, Shaoyi
    Veldhuis, Raymond N. J.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [28] Few-shot disease recognition algorithm based on supervised contrastive learning
    Mu, Jiawei
    Feng, Quan
    Yang, Junqi
    Zhang, Jianhua
    Yang, Sen
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [29] A meta-learning based method for segmentation of few-shot magnetic resonance images
    Chen X.
    Fu Z.
    Yao Y.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (02): : 193 - 201
  • [30] Few-Shot Classification Based on Sparse Dictionary Meta-Learning
    Jiang, Zuo
    Wang, Yuan
    Tang, Yi
    MATHEMATICS, 2024, 12 (19)