Ketogenesis promotes tolerance to Pseudomonas aeruginosa pulmonary infection

被引:10
作者
Tomlinson, Kira L. [1 ]
Chen, Ying-Tsun [1 ]
Junker, Alex [1 ]
Urso, AndreaCarola [1 ]
Lung, Tania Wong Fok [1 ]
Ahn, Danielle [1 ]
Hofstaedter, Casey E. [2 ]
Baskota, Swikrity U. [3 ]
Ernst, Robert K. [2 ]
Prince, Alice [1 ]
Riquelme, Sebastian A. [1 ]
机构
[1] Columbia Univ, Dept Pediat, New York, NY 10032 USA
[2] Univ Maryland, Dept Microbial Pathogenesis, Baltimore, MD 21201 USA
[3] Columbia Univ, Dept Pathol & Cell Biol, New York, NY 10032 USA
关键词
OUTER-MEMBRANE VESICLES; SUCCINATE-DEHYDROGENASE; DISEASE TOLERANCE; FUEL METABOLISM; BACTERIAL; MITOCHONDRIA; ITACONATE; INFLAMMATION; ADAPTATION; RESISTANCE;
D O I
10.1016/j.cmet.2023.09.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Pseudomonas aeruginosa is a common cause of pulmonary infection. As a Gram-negative pathogen, it can initiate a brisk and highly destructive inflammatory response; however, most hosts become tolerant to the bacterial burden, developing chronic infection. Using a murine model of pneumonia, we demonstrate that this shift from inflammation to disease tolerance is promoted by ketogenesis. In response to pulmonary infec-tion, ketone bodies are generated in the liver and circulate to the lungs where they impose selection for P. aeruginosa strains unable to display surface lipopolysaccharide (LPS). Such keto-adapted LPS strains fail to activate glycolysis and tissue-damaging cytokines and, instead, facilitate mitochondrial catabolism of fats and oxidative phosphorylation (OXPHOS), which maintains airway homeostasis. Within the lung, P. aeruginosa exploits the host immunometabolite itaconate to further stimulate ketogenesis. This environ-ment enables host -P. aeruginosa coexistence, supporting both pathoadaptive changes in the bacteria and the maintenance of respiratory integrity via OXPHOS.
引用
收藏
页码:1767 / 1781.e6
页数:22
相关论文
共 50 条
  • [21] Long-term evolution of antibiotic tolerance in Pseudomonas aeruginosa lung infections
    Ghoul, Melanie
    Andersen, Sandra B.
    Marvig, Rasmus L.
    Johansen, Helle K.
    Jelsbak, Lars
    Molin, Soren
    Perron, Gabriel
    Griffin, Ashleigh S.
    EVOLUTION LETTERS, 2023, 7 (06) : 389 - 400
  • [22] Cigarette Smoke Decreases Airway Epithelial FABP5 Expression and Promotes Pseudomonas aeruginosa Infection
    Gally, Fabienne
    Chu, Hong Wei
    Bowler, Russell P.
    PLOS ONE, 2013, 8 (01):
  • [23] HP1a-mediated heterochromatin formation promotes antimicrobial responses against Pseudomonas aeruginosa infection
    Wu, Po-Jen
    Yan, Shian-Jang
    BMC BIOLOGY, 2022, 20 (01)
  • [24] Quorum sensing gene lasR promotes phage vB_Pae_PLY infection in Pseudomonas aeruginosa
    Liu, Yan
    Yao, Zhuocheng
    Mao, Zhenzhi
    Tang, Miran
    Chen, Huanchang
    Qian, Changrui
    Zeng, Weiliang
    Zhou, Tieli
    Wu, Qing
    BMC MICROBIOLOGY, 2024, 24 (01):
  • [25] Pseudomonas aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus aureus in a Model of Cystic Fibrosis Respiratory Infection
    Limoli, Dominique H.
    Whitfield, Gregory B.
    Kitao, Tomoe
    Ivey, Melissa L.
    Davis, Michael R., Jr.
    Grahl, Nora
    Hogan, Deborah A.
    Rahme, Laurence G.
    Howell, P. Lynne
    O'Toole, George A.
    Goldberg, Joanna B.
    MBIO, 2017, 8 (02):
  • [26] Studies on Pseudomonas aeruginosa Infection in Hatcheries and Chicken
    Eraky, R. D.
    El-Ghany, W. A. Abd
    Soliman, K. M.
    JOURNAL OF THE HELLENIC VETERINARY MEDICAL SOCIETY, 2020, 71 (01): : 1953 - 1962
  • [27] Vaccination against respiratory Pseudomonas aeruginosa infection
    Grimwood, Keith
    Kyd, Jennelle M.
    Owen, Suzzanne J.
    Massa, Helen M.
    Cripps, Allan W.
    HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2015, 11 (01) : 14 - 20
  • [28] Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa
    Pewzner-Jung, Yael
    Tabazavareh, Shaghayegh Tavakoli
    Grassme, Heike
    Becker, Katrin Anne
    Japtok, Lukasz
    Steinmann, Joerg
    Joseph, Tammar
    Lang, Stephan
    Tuemmler, Burkhard
    Schuchman, Edward H.
    Lentsch, Alex B.
    Kleuser, Burkhard
    Edwards, Michael J.
    Futerman, Anthony H.
    Gulbins, Erich
    EMBO MOLECULAR MEDICINE, 2014, 6 (09) : 1205 - 1214
  • [29] Dual tobramycin and docosahexaenoic acid loaded nanoemulsions combating Pseudomonas aeruginosa-induced pulmonary infection
    Sun, Yingying
    Lu, Tianli
    Pan, Jieyi
    He, Haonan
    Xu, Mao
    Chen, Yujun
    Chen, Yan
    Fang, Pengchao
    Ye, Xiaoxing
    Li, Shuxuan
    Hu, Haiyan
    Yu, Shihui
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2024, 242
  • [30] Molecular mechanisms and therapeutic targets of acute exacerbations of chronic obstructive pulmonary disease with Pseudomonas aeruginosa infection
    Lin, Zhiwei
    Liu, Shuang
    Zhang, Ke
    Feng, Tianyu
    Luo, Yewei
    Liu, Yu
    Sun, Baoqing
    Zhou, Luqian
    RESPIRATORY RESEARCH, 2025, 26 (01)