Tailoring the Interface between Sulfur and Sulfide Solid Electrolyte for High-Areal-Capacity All-Solid-State Lithium-Sulfur Batteries

被引:30
|
作者
Kim, Hun [1 ]
Choi, Ha-Neul [1 ]
Hwang, Jang-Yeon [1 ,2 ]
Yoon, Chong Seung [2 ,3 ]
Sun, Yang-Kook [1 ,2 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Battery Engn, Seoul 04763, South Korea
[3] Hanyang Univ, Dept Mat Sci & Engn, Seoul 04763, South Korea
关键词
CATHODE;
D O I
10.1021/acsenergylett.3c01473
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fabricating high-capacity all-solid-state lithium-sulfur batteries (ASSLSBs) with long lifetimes is realistically challenging because of the poor ionic contact between the insulating element sulfur (S-8) and the solid electrolyte at the solid-solid interface. Herein, an inorganic Li-ion-conducting species composed of polysulfido-inter-mediate compounds (3Li(+)-PS4+n3- (n = 0)) is incorporated between S-8 and the sulfide solid electrolyte (SSE) of Li6PS5Cl (LPSCl) to enhance the ionic contact of S-8. A weakly polar solvent which is included in the mixing process but eventually removed promotes interfacial chemical reactions between S-8 and LPSCl, significantly enhancing the wettability of LPSCl toward the active material (S-8). This maximizes the utilization of S-8, facilitates interfacial Li-ion transport, and enhances the mechanical properties of the solid-state S cathode. As a result, a high-performance ASSLSB with a high areal capacity (5.1 mAh cm(-2)) and promising lifetime (250 cycles) at room temperature, operating at a current density of 1 mA cm(-2), is successfully developed.
引用
收藏
页码:3971 / 3979
页数:9
相关论文
共 50 条
  • [21] All-Solid-State Thin-Film Lithium-Sulfur Batteries
    Renming Deng
    Bingyuan Ke
    Yonghui Xie
    Shoulin Cheng
    Congcong Zhang
    Hong Zhang
    Bingan Lu
    Xinghui Wang
    Nano-Micro Letters, 2023, 15 (05) : 332 - 344
  • [22] Synergistic Interfacial Optimization for High-Sulfur-Content All-Solid-State Lithium-Sulfur Batteries
    Zhao, Bosheng
    Zhou, Chang
    Chen, Peng
    Gao, Xueping
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4679 - 4688
  • [23] Degradation of All-Solid-State Lithium-Sulfur Batteries with PEO-Based Composite Electrolyte
    Lee, Jongkwan
    Heo, Kookjin
    Song, Young-Woong
    Hwang, Dahee
    Kim, Min-Young
    Jeong, Hyejeong
    Shin, Dong-Chan
    Lim, Jinsub
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2022, 13 (02) : 199 - 207
  • [24] Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures
    Zhang, Zhihua
    Chen, Shaojie
    Yao, Xiayin
    Cui, Ping
    Duan, Jian
    Luo, Wei
    Huang, Yunhui
    Xu, Xiaoxiong
    ENERGY STORAGE MATERIALS, 2020, 24 : 714 - 718
  • [25] Solid Catholyte with Regulated Interphase Redox for All-Solid-State Lithium-Sulfur Batteries
    Shen, Kaier
    Shi, Weize
    Song, Huimin
    Zheng, Chenxi
    Yan, Yingjing
    Hong, Xufeng
    Liu, Xu
    An, Yun
    Li, Yuanrui
    Ye, Fei
    He, Mengxue
    Ye, Guo
    Ma, Chenyan
    Zheng, Lei
    Gao, Peng
    Pang, Quanquan
    ADVANCED MATERIALS, 2025, 37 (11)
  • [26] High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte
    Chen, Maohua
    Adams, Stefan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (03) : 697 - 702
  • [27] High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte
    Maohua Chen
    Stefan Adams
    Journal of Solid State Electrochemistry, 2015, 19 : 697 - 702
  • [28] Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries
    Zhu, Xinxin
    Jiang, Wei
    Zhao, Shu
    Huang, Renzhi
    Ling, Min
    Liang, Chengdu
    Wang, Liguang
    NANO ENERGY, 2022, 96
  • [29] Polythiocyanogen as Cathode Materials for High Temperature All-Solid-State Lithium-Sulfur Batteries
    Wang, Shen
    Zhou, Jianbin
    Feng, Shijie
    Patel, Maansi
    Lu, Bingyu
    Li, Weikang
    Soulen, Charles
    Feng, Jiaqi
    Meng, Ying Shirley
    Liu, Ping
    ACS ENERGY LETTERS, 2023, 8 (06) : 2699 - 2706
  • [30] Peach gum as an efficient binder for high-areal-capacity lithium-sulfur batteries
    Wan, Zhengwei
    Huang, Yingchong
    Zeng, Xiaomin
    Guo, Xinzhu
    Wu, Zhuoying
    Tian, Miaomiao
    Wu, Gu
    Ling, Min
    Li, Zeheng
    Gao, Xuehui
    Liang, Chengdu
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 30