Morphological, physiological, and biochemical responses of Pistacia atlantica seedlings to elevated CO2 concentration and drought stress

被引:2
|
作者
Yousefvand, Parvaneh [1 ]
Pilehvar, Babak [1 ]
Nasrolahi, Ali Heidar [2 ]
机构
[1] Lorestan Univ, Agr & Nat Resources Fac, Forestry Dept, Khorramabad, Iran
[2] Lorestan Univ, Agr & Nat Resources Fac, Water Engn Dept, Khorramabad, Iran
关键词
Elevated CO2; Drought stress; Growth; Photosynthesis; Oxidative stress; Antioxidants; STOMATAL CONDUCTANCE; WATER RELATIONS; PLANT-GROWTH; PHOTOSYNTHETIC CAPACITY; ROOT PRODUCTION; GAS-EXCHANGE; RISING CO2; CARBON; FOREST; NITROGEN;
D O I
10.1007/s10342-023-01548-x
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Elevated atmospheric CO2 concentration and changes in precipitation patterns affect plant physiological processes and alter ecosystem functions. In combination, the interactions between these factors result in complex responses that challenge our current understanding. We aimed to investigate the effects of elevated CO2 and drought stress on the growth and physiology traits of One-year-old Pistacia atlantica seedlings. Seedlings of P. atlantica were grown at two different CO2 concentrations (ambient 380 ppm and elevated 700 ppm) and the two irrigation regimes (100% and 50% of field capacity) for one growing season. Seedlings collar diameter, height, leaf area, biomass accumulation, root length and volume, photosynthetic parameters, pigment content, and relative water content increased at elevated CO2. At the same time, the amounts of proline, electrolyte leakage, malondialdehyde, and antioxidant enzymes decreased at elevated CO2. Drought stress had negative effects on the measured growth parameters. These, however, ameliorate in the presence of elevated CO2 through enhanced photosynthesis performance and maintaining better water status, and possibly also by a reduction of oxidative stress. Increased CO2, as expected in a future climate, might thus mitigate the negative effects of drought in P. atlantica trees under natural conditions.
引用
收藏
页码:657 / 670
页数:14
相关论文
共 50 条
  • [1] Morphological, physiological, and biochemical responses of Pistacia atlantica seedlings to elevated CO2 concentration and drought stress
    Parvaneh Yousefvand
    Babak Pilehvar
    Ali Heidar Nasrolahi
    European Journal of Forest Research, 2023, 142 : 657 - 670
  • [2] Morphological, Physiological, and Biochemical Responses of Zinnia to Drought Stress
    Toscano, Stefania
    Romano, Daniela
    HORTICULTURAE, 2021, 7 (10)
  • [3] Morphological, physiological and biochemical responses of plants to drought stress
    Anjum, Shakeel Ahmad
    Xie, Xiao-yu
    Wang, Long-chang
    Saleem, Muhammad Farrukh
    Man, Chen
    Lei, Wang
    AFRICAN JOURNAL OF AGRICULTURAL RESEARCH, 2011, 6 (09): : 2026 - 2032
  • [4] Morphological, biochemical, and physiological responses of canola cultivars to drought stress
    B. Kazemi Oskuei
    A. Bandehagh
    D. Farajzadeh
    B. Asgari Lajayer
    V. D. Rajput
    T. Astatkie
    International Journal of Environmental Science and Technology, 2023, 20 : 13551 - 13560
  • [5] Morphological, biochemical, and physiological responses of canola cultivars to drought stress
    Oskuei, B. Kazemi
    Bandehagh, A.
    Farajzadeh, D.
    Lajayer, B. Asgari
    Rajput, V. D.
    Astatkie, T.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (12) : 13551 - 13560
  • [6] Physiological and Transcriptome Responses to Elevated CO2 Concentration in Populus
    Kim, Tae-Lim
    Chung, Hoyong
    Veerappan, Karpagam
    Lee, Wi Young
    Park, Danbe
    Lim, Hyemin
    FORESTS, 2021, 12 (08):
  • [7] Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings
    Ayse Deligoz
    Merve Gur
    Acta Physiologiae Plantarum, 2015, 37
  • [8] Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings
    Deligoz, Ayse
    Gur, Merve
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (11)
  • [9] Effects of Elevated CO2 on Physiological Responses of Tall Fescue to Elevated Temperature, Drought Stress, and the Combined Stresses
    Yu, Jingjin
    Chen, Lihua
    Xu, Ming
    Huang, Bingru
    CROP SCIENCE, 2012, 52 (04) : 1848 - 1858
  • [10] Effects of elevated CO2 concentration and experimental warming on morphological, physiological, and biochemical responses of winter wheat under soil water deficiency
    Chang, Zhijie
    Hao, Lihua
    Lu, Yunze
    Liu, Liang
    Chen, Changhua
    Shi, Wei
    Li, Yue
    Wang, Yanrui
    Tian, Yinshuai
    FRONTIERS IN PLANT SCIENCE, 2023, 14