Potential theory for quantum Markov states and other quantum Markov chains

被引:2
|
作者
Dhahri, Ameur [1 ]
Fagnola, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
Quantum Markov chains; Potential; Recurrence; Transience;
D O I
10.1007/s13324-023-00790-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a potential theory for a class of Quantum Markov Chains whose forward and backward Markov transition operators satisfy a special composition rule. We study the associated recurrence, transient and irreducibility properties and we prove that an irreducible quantum Markov chain is either recurrent or transient. Moreover, we show that our theory applies in many cases such as: quantum random walks, diagonal states, entangled Quantum Markov Chains. A characterization of Entangled Quantum Markov Chains is also given.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Ergodic Property of Stable-Like Markov Chains
    Sandric, Nikola
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (02) : 459 - 490
  • [32] Predictive characterization of mixtures of Markov chains
    Fortini, Sandra
    Petrone, Sonia
    BERNOULLI, 2017, 23 (03) : 1538 - 1565
  • [33] MARKOV-CHAINS INDEXED BY TREES
    BENJAMINI, I
    PERES, Y
    ANNALS OF PROBABILITY, 1994, 22 (01): : 219 - 243
  • [34] Recurrence and transience of contractive autoregressive processes and related Markov chains
    Zerner, Martin P. W.
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [35] On transience conditions for Markov chains and random walks
    Denisov, DK
    Foss, SG
    SIBERIAN MATHEMATICAL JOURNAL, 2003, 44 (01) : 44 - 57
  • [36] Finite Markov chains and multiple orthogonal polynomials
    Branquinho, Amilcar
    Diaz, Juan E. F.
    Foulquie-Moreno, Ana
    Manas, Manuel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 463
  • [37] On Transience Conditions for Markov Chains and Random Walks
    D. E. Denisov
    S. G. Foss
    Siberian Mathematical Journal, 2003, 44 : 44 - 57
  • [38] Universal recovery map for approximate Markov chains
    Sutter, David
    Fawzi, Omar
    Renner, Renato
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2186):
  • [39] Markov chains with heavy-tailed increments and asymptotically zero drift
    Georgiou, Nicholas
    Menshikov, Mikhail, V
    Petritis, Dimitri
    Wade, Andrew R.
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [40] Upper escape rate of Markov chains on weighted graphs
    Huang, Xueping
    Shiozawa, Yuichi
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 317 - 347