Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD

被引:32
作者
Inci, Mustafa Kutlu [1 ]
Park, Se-Hyung [2 ,3 ]
Helsley, Robert N. [2 ,3 ,4 ]
Attia, Suzanna L. [2 ]
Softic, Samir [2 ,3 ,5 ,6 ,7 ]
机构
[1] Sanko Univ, Sch Med, Gaziantep, Turkey
[2] Univ Kentucky, Dept Pediat, Coll Med, Lexington, KY USA
[3] Univ Kentucky, Dept Pharmacol & Nutr Sci, Lexington, KY USA
[4] Univ Kentucky, Saha Cardiovasc Res Ctr, Lexington, KY USA
[5] Harvard Med Sch, Joslin Diabet Ctr, Boston, MA USA
[6] Harvard Med Sch, Dept Med, Boston, MA USA
[7] Univ Kentucky, Dept Pediat, 900 South Limestone, Lexington, KY 40536 USA
基金
美国国家卫生研究院;
关键词
Sugar; Fructose; Fatty acid oxidation (FAO); Western diet; Non-alcoholic fatty liver disease (NAFLD); DE-NOVO LIPOGENESIS; ACTIVATED RECEPTOR-ALPHA; INTESTINAL BARRIER FUNCTION; SREBP-1C MESSENGER-RNA; KETOGENIC DIET; HEPATIC STEATOSIS; INSULIN SENSITIVITY; ACID OXIDATION; LIVER-DISEASE; NONALCOHOLIC STEATOHEPATITIS;
D O I
10.1016/j.jnutbio.2022.109224
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial beta-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPAR alpha and its target CPT1 alpha, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1 alpha, a co-activator of PPAR alpha and acetylation of CPT1 alpha, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
[41]   l-Fucose ameliorates high-fat diet-induced obesity and hepatic steatosis in mice [J].
Wu, Guangyan ;
Niu, Mengwei ;
Tang, Wenli ;
Hu, Jingjuan ;
Wei, Guoquan ;
He, Zhanke ;
Chen, Yangping ;
Jiang, Yong ;
Chen, Peng .
JOURNAL OF TRANSLATIONAL MEDICINE, 2018, 16
[42]   Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source [J].
Boland, Michelle L. ;
Oro, Denise ;
Tolbol, Kirstine S. ;
Thrane, Sebastian T. ;
Nielsen, Jens Christian ;
Cohen, Taylor S. ;
Tabor, David E. ;
Fernandes, Fiona ;
Tovchigrechko, Andrey ;
Veidal, Sanne S. ;
Warrener, Paul ;
Sellman, Bret R. ;
Jelsing, Jacob ;
Feigh, Michael ;
Vrang, Niels ;
Trevaskis, James L. ;
Hansen, Henrik H. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2019, 25 (33) :4904-4920
[43]   Metabolomic Study of High-Fat Diet-Induced Obese (DIO) and DIO Plus CCl4-Induced NASH Mice and the Effect of Obeticholic Acid [J].
Zhu, Nanlin ;
Huang, Suling ;
Zhang, Qingli ;
Zhao, Zhuohui ;
Qu, Hui ;
Ning, Mengmeng ;
Leng, Ying ;
Liu, Jia .
METABOLITES, 2021, 11 (06)
[44]   Hypoxia Suppresses High Fat Diet-Induced Steatosis And Development Of Hepatic Adenomas [J].
Sweeney, Nathan W. ;
Gomes, Cecil J. ;
De Armond, Richard ;
Centuori, Sara M. ;
Parthasarathy, Sairam ;
Martinez, Jesse D. .
HYPOXIA, 2019, 7 :53-63
[45]   Suppression of High Fat Diet-Induced Liver Cell Injury by Swim Exercise [J].
Dallak, Mohammad A. .
INTERNATIONAL JOURNAL OF MORPHOLOGY, 2018, 36 (01) :327-332
[46]   The Effects of Gymnema sylvestre in High-Fat Diet-Induced Metabolic Disorders [J].
Kim, Hyeon-Jeong ;
Kim, Sanghwa ;
Lee, Ah Young ;
Jang, Yoonjeong ;
Davaadamdin, Orkhonselenge ;
Hong, Seong-Ho ;
Kim, Jun Sung ;
Cho, Myung-Haing .
AMERICAN JOURNAL OF CHINESE MEDICINE, 2017, 45 (04) :813-832
[47]   Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis [J].
Morris, E. Matthew ;
Meers, Grace M. E. ;
Koch, Lauren G. ;
Britton, Steven L. ;
Fletcher, Justin A. ;
Fu, Xiaorong ;
Shankar, Kartik ;
Burgess, Shawn C. ;
Ibdah, Jamal A. ;
Rector, R. Scott ;
Thyfault, John P. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2016, 311 (04) :E749-E760
[48]   Lipidomics reveals the lipid-lowering and hepatoprotective effects of Celosia Semen on high-fat diet-induced NAFLD mice [J].
Zhao, Jin-Quan ;
Zhou, Qi-Qi ;
Liu, Ke ;
Li, Ping ;
Jiang, Yan ;
Li, Hui-Jun .
JOURNAL OF ETHNOPHARMACOLOGY, 2025, 337
[49]   CD4+T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice [J].
Her, Zhisheng ;
Tan, Joel Heng Loong ;
Lim, Yee-Siang ;
Tan, Sue Yee ;
Chan, Xue Ying ;
Tan, Wilson Wei Sheng ;
Liu, Min ;
Yong, Kylie Su Mei ;
Lai, Fritz ;
Ceccarello, Erica ;
Zheng, Zhiqiang ;
Fan, Yong ;
Chang, Kenneth Tou En ;
Sun, Lei ;
Chang, Shih Chieh ;
Chin, Chih-Liang ;
Lee, Guan Huei ;
Dan, Yock Young ;
Chan, Yun-Shen ;
Lim, Seng Gee ;
Chan, Jerry Kok Yen ;
Chandy, K. George ;
Chen, Qingfeng .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[50]   Hepatic Clstn3 Ameliorates Lipid Metabolism Disorders in High Fat Diet-Induced NAFLD through Activation of FXR [J].
Guo, Jingyi ;
Huang, Shangyi ;
Yi, Qincheng ;
Liu, Naihua ;
Cui, Tianqi ;
Duan, Siwei ;
Chen, Jiabing ;
Li, Jiayu ;
Li, Jun ;
Wang, Lei ;
Gao, Yong ;
Nie, Guangning .
ACS OMEGA, 2023, 8 (29) :26158-26169