Dynamics of locally damped Timoshenko systems

被引:2
作者
Freitas, Mirelson M. [1 ]
Almeida Junior, Dilberto S. [2 ]
Santos, Mauro L. [2 ]
Ramos, Anderson J. A. [1 ]
Caljaro, Ronal Q. [2 ]
机构
[1] Fed Univ Para, Raimundo Santana St S-N, BR-68721000 Salinopolis, PA, Brazil
[2] Fed Univ, Inst Exact & Nat Sci, Doctoral Program Math, Belem, Para, Brazil
关键词
Timoshenko system; localized damping; global attractor; exponential attractor; quasi-stability; WAVE-EQUATION; EVOLUTION-EQUATIONS; DECAY-RATES; STABILITY; ENERGY;
D O I
10.1177/10812865221101864
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the long-time dynamics of a Timoshenko system modeling vibrations of beams with non-linear localized damping mechanisms acting on both displacement and angular rotation and subjected to non-linear source terms. Using recent quasi-stability methods, we prove the existence of smooth finite dimensional global attractor, which is characterized as unstable manifold of the set of stationary solutions. Moreover, the existence of exponential attractors is shown. These aspects were not previously considered for the Timoshenko system with localized damping.
引用
收藏
页码:1012 / 1034
页数:23
相关论文
共 26 条
  • [1] On the nature of dissipative Timoshenko systems at light of the second spectrum of frequency
    Almeida Junior, D. S.
    Ramos, A. J. A.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [2] Babin A., 1992, ATTRACTORS EVOLUTION
  • [3] Barbu V, 2010, SPRINGER MONOGR MATH, P27, DOI 10.1007/978-1-4419-5542-5_2
  • [4] DISSIPATIVE PERIODIC PROCESSES
    BILLOTTI, JE
    LASALLE, JP
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (06) : 1082 - &
  • [5] Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Falco Nascimento, F. A.
    Lasiecka, I.
    Rodrigues, J. H.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1189 - 1206
  • [6] Decay rates for Bresse system with arbitrary nonlinear localized damping
    Charles, Wenden
    Soriano, J. A.
    Falcao Nascimento, Flavio A.
    Rodrigues, J. H.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2267 - 2290
  • [7] On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation
    Chueshov, I
    Eller, M
    Lasiecka, I
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) : 1901 - 1951
  • [8] Chueshov I, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87712-9
  • [9] Chueshov I, 2008, MEM AM MATH SOC, V195, pVIII
  • [10] UNIFORM ENERGY DECAY FOR A WAVE EQUATION WITH PARTIALLY SUPPORTED NONLINEAR BOUNDARY DISSIPATION WITHOUT GROWTH RESTRICTIONS
    Daoulatli, Moez
    Lasiecka, Irena
    Toundykov, Daniel
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (01): : 67 - 94