Automotive adhesive defect detection based on improved YOLOv8

被引:2
|
作者
Wang, Chunjie [1 ]
Sun, Qibo [1 ]
Dong, Xiaogang [1 ]
Chen, Jia [1 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Yanan St 2055, Changchun 130012, Jilin, Peoples R China
关键词
Automotive adhesive defect detection; Real-time object detection; Attention mechanism; YOLOv8; WIoU loss function;
D O I
10.1007/s11760-023-02932-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In automotive adhesive defect detection, manual inspection suffers from low efficiency and blind spots in human vision, which affects the performance of parts. Therefore, automated detection methods are particularly important. To address the issue of adhesive defects significantly impacting production during automated gluing processes, we propose an adhesive defect detection method for automotive applications based on the improved YOLOv8 (named YOLOv8n-SSE). First, we used the SSE (skip squeeze and excitation) attention mechanism in the backbone part to dynamically adjust the importance of different channels in our model and allow our model to selectively focus on important features. Then, the original bounding box loss function is replaced by the WIoU loss function. Experimental results demonstrate that this method improves the mAP50 of the original YOLOv8n by 3.25% and achieves an average detection speed of 7.9ms per image, equivalent to 126.58 frames per second (FPS), meeting the real-time defect detection requirements.
引用
收藏
页码:2583 / 2595
页数:13
相关论文
共 50 条
  • [41] An Improved Bird Detection Method Using Surveillance Videos from Poyang Lake Based on YOLOv8
    Ma, Jianchao
    Guo, Jiayuan
    Zheng, Xiaolong
    Fang, Chaoyang
    ANIMALS, 2024, 14 (23):
  • [42] ESCL-YOLO: a target detection algorithm for complex underwater environments based on improved YOLOv8
    Wu, Huixin
    Wang, Liuyi
    Zhu, Yang
    Cao, Mengdi
    Zhou, Hongyang
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [43] FE-YOLO: A Lightweight Model for Construction Waste Detection Based on Improved YOLOv8 Model
    Yang, Yizhong
    Li, Yexue
    Tao, Maohu
    BUILDINGS, 2024, 14 (09)
  • [44] Object Detection for Remote Sensing Based on the Enhanced YOLOv8 With WBiFPN
    Shen, Lingyun
    Lang, Baihe
    Song, Zhengxun
    IEEE ACCESS, 2024, 12 : 158239 - 158257
  • [45] Vegetable disease detection using an improved YOLOv8 algorithm in the greenhouse plant environment
    Wang, Xuewei
    Liu, Jun
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [46] GFI-YOLOv8: Sika Deer Posture Recognition Target Detection Method Based on YOLOv8
    Gong, He
    Liu, Jingyi
    Li, Zhipeng
    Zhu, Hang
    Luo, Lan
    Li, Haoxu
    Hu, Tianli
    Guo, Ying
    Mu, Ye
    ANIMALS, 2024, 14 (18):
  • [47] Vegetable disease detection using an improved YOLOv8 algorithm in the greenhouse plant environment
    Xuewei Wang
    Jun Liu
    Scientific Reports, 14
  • [48] A Lightweight Rice Pest Detection Algorithm Using Improved Attention Mechanism and YOLOv8
    Yin, Jianjun
    Huang, Pengfei
    Xiao, Deqin
    Zhang, Bin
    AGRICULTURE-BASEL, 2024, 14 (07):
  • [49] YOLO-APDM: Improved YOLOv8 for Road Target Detection in Infrared Images
    Ling, Song
    Hong, Xianggong
    Liu, Yongchao
    SENSORS, 2024, 24 (22)
  • [50] A rapid identification technique for rice adulteration based on improved YOLOV8 model
    Zhang, Yuan
    Xing, Xiao
    Zhu, Lei
    Li, Xin
    Wang, Jianing
    Du, Yanping
    Han, Rui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)