Large-eddy simulation of turbulent boundary layer flow over multiple hills

被引:2
作者
Deng, Ying [1 ,2 ]
Chong, Kai Leong [1 ]
Li, Yan [2 ]
Lu, Zhi-ming [1 ]
Wang, Bo-fu [1 ]
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
[2] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
关键词
Large-eddy simulation (LES); atmospheric boundary layer (ABL) flow; complex terrain; turbulent flow fields; COMPLEX TERRAIN; ROUGHNESS; VISCOSITY;
D O I
10.1007/s42241-023-0050-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Atmospheric boundary layer (ABL) flow over multiple-hill terrain is studied numerically. The spectral vanishing viscosity (SVV) method is employed for implicit large eddy simulation (ILES). ABL flow over one hill, double hills, and three hills are presented in detail. The instantaneous three-dimensional vortex structures, mean velocity, and turbulence intensity in mainstream and vertical directions around the hills are investigated to reveal the main properties of this turbulent flow. During the flow evolution downstream, the Kelvin-Helmholtz vortex, braid vortex, and hairpin vortex are observed sequentially. The turbulence intensity is enhanced around crests and reduced in the recirculation zones. The present results are helpful for understanding the impact of topography on the turbulent flow. The findings can be useful in various fields, such as wind energy, air pollution, and weather forecasting.
引用
收藏
页码:746 / 756
页数:11
相关论文
共 33 条
[1]   Scale adaptive simulation of vortex structures past a square cylinder [J].
Aminian, Javad .
JOURNAL OF HYDRODYNAMICS, 2018, 30 (04) :657-671
[2]   The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill [J].
Berg, J. ;
Mann, J. ;
Bechmann, A. ;
Courtney, M. S. ;
Jorgensen, H. E. .
BOUNDARY-LAYER METEOROLOGY, 2011, 141 (02) :219-243
[3]   Nektar plus plus : An open-source spectral/hp element framework [J].
Cantwell, C. D. ;
Moxey, D. ;
Comerford, A. ;
Bolis, A. ;
Rocco, G. ;
Mengaldo, G. ;
De Grazia, D. ;
Yakovlev, S. ;
Lombard, J. -E. ;
Ekelschot, D. ;
Jordi, B. ;
Xu, H. ;
Mohamied, Y. ;
Eskilsson, C. ;
Nelson, B. ;
Vos, P. ;
Biotto, C. ;
Kirby, R. M. ;
Sherwin, S. J. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 192 :205-219
[4]   Numerical study on turbulent boundary layers over two-dimensional hills - Effects of surface roughness and slope [J].
Cao, Shuyang ;
Wang, Tong ;
Ge, Yaojun ;
Tamura, Yukio .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2012, 104 :342-349
[5]   Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill [J].
Cao, SY ;
Tamura, T .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2006, 94 (01) :1-19
[6]   Coupling framework for a wind speed forecasting model applied to wind energy [J].
Deng Ying ;
Chong KaiLeong ;
Wang BoFu ;
Zhou Quan ;
Lu ZhiMing .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (10) :2462-2473
[7]   Large-eddy simulation of turbulent flow over a forested hill: Validation and coherent structure identification [J].
Dupont, S. ;
Brunet, Y. ;
Finnigan, J. J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (636) :1911-1929
[8]   A system for wind power estimation in mountainous terrain. Prediction of Askervein hill data [J].
Eidsvik, KJ .
WIND ENERGY, 2005, 8 (02) :237-249
[9]   Boundary-Layer Flow Over Complex Topography [J].
Finnigan, John ;
Ayotte, Keith ;
Harman, Ian ;
Katul, Gabriel ;
Oldroyd, Holly ;
Patton, Edward ;
Poggi, Davide ;
Ross, Andrew ;
Taylor, Peter .
BOUNDARY-LAYER METEOROLOGY, 2020, 177 (2-3) :247-313
[10]   STABLE ATMOSPHERIC BOUNDARY LAYERS AND DIURNAL CYCLES Challenges for Weather and Climate Models [J].
Holtslag, A. A. M. ;
Svensson, G. ;
Baas, P. ;
Basu, S. ;
Beare, B. ;
Beljaars, A. C. M. ;
Bosveld, F. C. ;
Cuxart, J. ;
Lindvall, J. ;
Steeneveld, G. J. ;
Tjernstrom, M. ;
Van de Wiel, B. J. H. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (11) :1691-1706