Scaling up Functional Analyses of the G Protein-Coupled Receptor Rhodopsin

被引:1
|
作者
Scott, Benjamin M. [1 ]
Chen, Steven K. [1 ]
Van Nynatten, Alexander [1 ]
Liu, Jing [1 ]
Schott, Ryan K. [2 ,3 ,4 ,5 ]
Heon, Elise [6 ]
Peisajovich, Sergio G. [1 ]
Chang, Belinda S. W. [1 ,2 ,7 ]
机构
[1] Univ Toronto, Dept Cell & Syst Biol, Toronto, ON, Canada
[2] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada
[3] York Univ, Dept Biol, Toronto, ON, Canada
[4] York Univ, Ctr Vis Res, Toronto, ON, Canada
[5] Smithsonian Inst, Dept Vertebrate Zool, Natl Museum Nat Hist, Washington, DC USA
[6] Hosp Sick Children, Dept Ophthalmol, Toronto, ON, Canada
[7] Univ Toronto, Ctr Anal Genome Evolut & Funct, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
G protein-coupled receptor; High-throughput yeast assay; Rhodopsin structure and function; RETINITIS-PIGMENTOSA; MOLECULAR EVOLUTION; INTERNAL PACKING; ACID; COUNTERION; OPSIN; STABILITY; MEMBRANE; ACTIVATION; TOLERANCE;
D O I
10.1007/s00239-024-10154-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条
  • [21] The Role of Ligands on the Equilibria Between Functional States of a G Protein-Coupled Receptor
    Kim, Tae Hun
    Chung, Ka Young
    Manglik, Aashish
    Hansen, Alexandar L.
    Dror, Ron O.
    Mildorf, Thomas J.
    Shaw, David E.
    Kobilka, Brian K.
    Prosser, R. Scott
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (25) : 9465 - 9474
  • [22] G2A is an oncogenic G protein-coupled receptor
    Irene E Zohn
    Mark Klinger
    Xantha Karp
    Heather Kirk
    Marc Symons
    Magdalena Chrzanowska-Wodnicka
    Channing J Der
    Robert J Kay
    Oncogene, 2000, 19 : 3866 - 3877
  • [23] G2A is an oncogenic G protein-coupled receptor
    Zohn, IE
    Klinger, M
    Karp, X
    Kirk, H
    Symons, M
    Chrzanowska-Wodnicka, M
    Der, CJ
    Kay, RJ
    ONCOGENE, 2000, 19 (34) : 3866 - 3877
  • [24] G protein-coupled receptor signaling: transducers and effectors
    Jiang, Haoran
    Galtes, Daniella
    Wang, Jialu
    Rockman, Howard A.
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2022, 323 (03): : C731 - C748
  • [25] G Protein-Coupled Receptor Heteromers in Brain: Functional and Therapeutic Importance in Neuropsychiatric Disorders
    Sun, Yalin
    Hasbi, Ahmed
    George, Susan R.
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2025, 65 : 215 - 236
  • [26] Docosahexaenoic acid, G protein-coupled receptors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target?
    Nehra, Deepika
    Pan, Amy H.
    Le, Hau D.
    Fallon, Erica M.
    Carlson, Sarah J.
    Kalish, Brian T.
    Puder, Mark
    JOURNAL OF SURGICAL RESEARCH, 2014, 188 (02) : 451 - 458
  • [27] G protein βγ subunits: Central mediators of G protein-coupled receptor signaling
    A. V. Smrcka
    Cellular and Molecular Life Sciences, 2008, 65 : 2191 - 2214
  • [28] GPCRdb: the G protein-coupled receptor database - an introduction
    Munk, C.
    Isberg, V.
    Mordalski, S.
    Harpsoe, K.
    Rataj, K.
    Hauser, A. S.
    Kolb, P.
    Bojarski, A. J.
    Vriend, G.
    Gloriam, D. E.
    BRITISH JOURNAL OF PHARMACOLOGY, 2016, 173 (14) : 2195 - 2207
  • [29] Contribution of heteromerization to G protein-coupled receptor function
    Gaitonde, Supriya A.
    Gonzalez-Maeso, Javier
    CURRENT OPINION IN PHARMACOLOGY, 2017, 32 : 23 - 31
  • [30] Regulation of G Protein-Coupled Receptor Kinases by Phospholipids
    Homan, K. T.
    Glukhova, A.
    Tesmer, J. J. G.
    CURRENT MEDICINAL CHEMISTRY, 2013, 20 (01) : 39 - 46