Scaling up Functional Analyses of the G Protein-Coupled Receptor Rhodopsin

被引:1
|
作者
Scott, Benjamin M. [1 ]
Chen, Steven K. [1 ]
Van Nynatten, Alexander [1 ]
Liu, Jing [1 ]
Schott, Ryan K. [2 ,3 ,4 ,5 ]
Heon, Elise [6 ]
Peisajovich, Sergio G. [1 ]
Chang, Belinda S. W. [1 ,2 ,7 ]
机构
[1] Univ Toronto, Dept Cell & Syst Biol, Toronto, ON, Canada
[2] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada
[3] York Univ, Dept Biol, Toronto, ON, Canada
[4] York Univ, Ctr Vis Res, Toronto, ON, Canada
[5] Smithsonian Inst, Dept Vertebrate Zool, Natl Museum Nat Hist, Washington, DC USA
[6] Hosp Sick Children, Dept Ophthalmol, Toronto, ON, Canada
[7] Univ Toronto, Ctr Anal Genome Evolut & Funct, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
G protein-coupled receptor; High-throughput yeast assay; Rhodopsin structure and function; RETINITIS-PIGMENTOSA; MOLECULAR EVOLUTION; INTERNAL PACKING; ACID; COUNTERION; OPSIN; STABILITY; MEMBRANE; ACTIVATION; TOLERANCE;
D O I
10.1007/s00239-024-10154-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条
  • [1] Scaling up Functional Analyses of the G Protein-Coupled Receptor Rhodopsin
    Benjamin M. Scott
    Steven K. Chen
    Alexander Van Nynatten
    Jing Liu
    Ryan K. Schott
    Elise Heon
    Sergio G. Peisajovich
    Belinda S. W. Chang
    Journal of Molecular Evolution, 2024, 92 : 61 - 71
  • [2] The G protein-coupled receptor rhodopsin in the native membrane
    Fotiadis, D
    Liang, Y
    Filipek, S
    Saperstein, DA
    Engel, A
    Palczewski, K
    FEBS LETTERS, 2004, 564 (03): : 281 - 288
  • [3] Effect of Sodium Valproate on the Conformational Stability of the Visual G Protein-Coupled Receptor Rhodopsin
    Razzaghi, Neda
    Fernandez-Gonzalez, Pol
    Mas-Sanchez, Aina
    Vila-Julia, Guillem
    Jesus Perez, Juan
    Garriga, Pere
    MOLECULES, 2021, 26 (10):
  • [4] Molecular assembly of rhodopsin with G protein-coupled receptor kinases
    He, Yuanzheng
    Gao, Xiang
    Goswami, Devrishi
    Hou, Li
    Pal, Kuntal
    Yin, Yanting
    Zhao, Gongpu
    Ernst, Oliver P.
    Griffin, Patrick
    Melcher, Karsten
    Xu, H. Eric
    CELL RESEARCH, 2017, 27 (06) : 728 - 747
  • [5] FRET sensors reveal the retinal entry pathway in the G protein-coupled receptor rhodopsin
    Tian, He
    Gunnison, Kathryn M.
    Kazmi, Manija A.
    Sakmar, Thomas P.
    Huber, Thomas
    ISCIENCE, 2022, 25 (04)
  • [6] Substrate-Induced Changes in the Dynamics of Rhodopsin Kinase (G Protein-Coupled Receptor Kinase 1)
    Orban, Tivadar
    Huang, Chih-chin
    Homan, Kristoff T.
    Jastrzebska, Beata
    Tesmer, John J. G.
    Palczewski, Krzysztof
    BIOCHEMISTRY, 2012, 51 (16) : 3404 - 3411
  • [7] G Protein-coupled Receptor Biased Agonism
    Hodavance, Sima Y.
    Gareri, Clarice
    Torok, Rachel D.
    Rockman, Howard A.
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2016, 67 (03) : 193 - 202
  • [8] A rhodopsin-based model for melatonin recognition at its G protein-coupled receptor
    Navajas, C
    Kokkola, T
    Poso, A
    Honka, N
    Gynther, J
    Laitinen, JT
    EUROPEAN JOURNAL OF PHARMACOLOGY, 1996, 304 (1-3) : 173 - 183
  • [9] A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization
    Milligan, G.
    BRITISH JOURNAL OF PHARMACOLOGY, 2008, 153 : S216 - S229
  • [10] G Protein-Coupled Receptor 30: Estrogen Receptor or Collaborator?
    Levin, Ellis R.
    ENDOCRINOLOGY, 2009, 150 (04) : 1563 - 1565