Approximate Controllability of Non-autonomous Second Order Impulsive Functional Evolution Equations in Banach Spaces

被引:1
作者
Arora, Sumit [1 ]
Singh, Soniya [1 ]
Mohan, Manil T. T. [2 ]
Dabas, Jaydev [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Appl Math & Sci Comp, Roorkee 247667, Uttarakhand, India
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
关键词
Abstract functional evolution equations; Non-instantaneous impulses; Approximate controllability; Evolution operator; Cosine family; NONLINEAR DIFFERENTIAL-EQUATIONS; TIME-DEPENDENT PERTURBATION; COSINE-FAMILIES; MILD SOLUTIONS; SYSTEMS; INCLUSIONS; EXISTENCE;
D O I
10.1007/s12346-022-00718-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates the approximate controllability of second order non-autonomous functional evolution equations involving non-instantaneous impulses and nonlocal conditions. First, we discuss the approximate controllability of second order linear system in detail, which lacks in the existing literature. Then, we derive sufficient conditions for approximate controllability of our system in separable reflexive Banach spaces via linear evolution operator, resolvent operator conditions, and Schauder's fixed point theorem. Moreover, in this paper, we define proper identification of resolvent operator in Banach spaces. Finally, we provide two concrete examples to validate our results.
引用
收藏
页数:36
相关论文
共 55 条
  • [1] Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion
    Ahmed, Hamdy M.
    El-Borai, Mahmoud M.
    El Bab, A. S. Okb
    Ramadan, M. Elsaid
    [J]. BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [2] [Anonymous], 2006, ImpulsiveDifferentialEquationsandInclusions
  • [3] Approximate controllability of the non-autonomous impulsive evolution equation with state-dependent delay in Banach spaces
    Arora, S.
    Mohan, Manil T.
    Dabas, J.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2021, 39
  • [4] Approximate controllability of semilinear impulsive functional differential systems with non-local conditions
    Arora, Sumit
    Singh, Soniya
    Dabas, Jaydev
    Mohan, Manil T.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) : 1070 - 1088
  • [5] APPROXIMATE CONTROLLABILITY OF A SOBOLEV TYPE IMPULSIVE FUNCTIONAL EVOLUTION SYSTEM IN BANACH SPACES
    Arora, Sumit
    Mohan, Manil T.
    Dabas, Jaydev
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2021, 11 (04) : 857 - 883
  • [6] Approximate controllability of second order semilinear stochastic system with nonlocal conditions
    Arora, Urvashi
    Sukavanam, N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 111 - 119
  • [7] Barbu V., 1993, MATH SCI ENG
  • [8] Barbu V, 2018, CONTROLLABILITY STAB
  • [9] Bochenek J., 1997, ANN POL MATH, V66, P15, DOI [https://doi.org/10.4064/ap-66-1-15-35, DOI 10.4064/AP-66-1-15-35]
  • [10] Byszewski L., 1991, Applicable Analysis, V40, P11, DOI 10.1080/00036819008839989