Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review

被引:6
作者
Khanna, Narendra N. [1 ,2 ]
Singh, Manasvi [3 ]
Maindarkar, Mahesh [2 ,3 ,5 ]
Kumar, Ashish [4 ]
Johri, Amer M. [6 ]
Mentella, Laura [7 ]
Laird, John R. [8 ]
Paraskevas, Kosmas I. [9 ]
Ruzsa, Zoltan [10 ]
Singh, Narpinder [11 ]
Kalra, Mannudeep K. [12 ]
Fernandes, Jose Fernandes E. [13 ]
Chaturvedi, Seemant [14 ,15 ]
Nicolaides, Andrew [16 ,17 ]
Rathore, Vijay [18 ]
Singh, Inder [3 ]
Teji, Jagjit S. [19 ]
Al-Maini, Mostafa [20 ]
Isenovic, Esma R. [21 ]
Viswanathan, Vijay [22 ]
Khanna, Puneet [23 ]
Fouda, Mostafa M. [24 ]
Saba, Luca [25 ]
Suri, Jasjit S. [2 ,3 ,26 ,27 ]
机构
[1] Indraprastha APOLLO Hosp, Dept Cardiol, New Delhi, India
[2] Asia Pacific Vasc Soc, New Delhi, India
[3] AtheroPoint, Stroke Monitoring & Diagnost Div, Roseville, CA USA
[4] Bennett Univ, Greater Noida, India
[5] Maharashtra Inst Technol Art Design & Technol Uni, Sch Bioengn Sci & Res, Pune, India
[6] Queens Univ, Dept Med, Div Cardiol, Kingston, ON, Canada
[7] Univ Toronto, Dept Med, Div Cardiol, Toronto, ON, Canada
[8] Adventist Hlth St Helena, Heart & Vasc Inst, St Helena, CA USA
[9] Cent Clin Athens, Dept Vasc Surg, Athens, Greece
[10] Univ Szeged, Invas Cardiol Div, Szeged, Hungary
[11] Graph Era Deemed Univ, Dept Food Sci & Technol, Dehra Dun, Uttarakhand, India
[12] Harvard Med Sch, Dept Radiol, Boston, MA USA
[13] Univ Lisbon, Dept Vasc Surg, Lisbon, Portugal
[14] Univ Maryland, Dept Neurol, Baltimore, MD USA
[15] Univ Maryland, Stroke Program, Baltimore, MD USA
[16] Vasc Screening & Diagnost Ctr, Nicosia, Cyprus
[17] Univ Nicosia, Med Sch, Nicosia, Cyprus
[18] Kaiser Permanente, Nephrol Dept, Sacramento, CA USA
[19] Ann & Robert H Lurie Childrens Hosp Chicago, Chicago, IL USA
[20] Allergy Clin Immunol & Rheumatol Inst, Toronto, ON, Canada
[21] Univ Belgrade, Natl Inst Republ Serbia, Dept Radiobiol & Mol Genet, Beograd, Serbia
[22] MV Diabet Ctr, Chennai, Tamil Nadu, India
[23] AIIMS, Dept Anaesthesiol, New Delhi, India
[24] Idaho State Univ, Dept Elect & Comp Engn, Pocatello, ID USA
[25] Azienda Osped Univ, Dept Radiol, Cagliari, Italy
[26] Graph Era Deemed Univ, Dept Comp Engn, Dehra Dun, India
[27] AtheroPoint, Stroke Monitoring & Diag Div, Roseville, CA 95661 USA
关键词
Cardiovascular Disease; Genomics; Polygenic Risk Score; Artificial Intelligence; Precision Medicine; CORONARY-ARTERY-DISEASE; MACHINE LEARNING FRAMEWORK; GENOME-WIDE ASSOCIATION; INTRAVASCULAR ULTRASOUND; TISSUE CHARACTERIZATION; ERECTILE DYSFUNCTION; GENE-EXPRESSION; HEART; SYSTEM; CLASSIFICATION;
D O I
10.3346/jkms.2023.38.e395
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
引用
收藏
页数:32
相关论文
共 193 条
  • [1] Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging
    Abdel Razek, Ahmed Abdel Khalek
    Alksas, Ahmed
    Shehata, Mohamed
    AbdelKhalek, Amr
    Abdel Baky, Khaled
    El-Baz, Ayman
    Helmy, Eman
    [J]. INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [2] Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification
    Acharya, U. R.
    Mookiah, M. R. K.
    Sree, S. Vinitha
    Yanti, R.
    Martis, R. J.
    Saba, L.
    Molinari, F.
    Guerriero, S.
    Suri, J. S.
    [J]. ULTRASCHALL IN DER MEDIZIN, 2014, 35 (03): : 237 - 245
  • [3] Unboxing Deep Learning Model of Food Delivery Service Reviews Using Explainable Artificial Intelligence (XAI) Technique
    Adak, Anirban
    Pradhan, Biswajeet
    Shukla, Nagesh
    Alamri, Abdullah
    [J]. FOODS, 2022, 11 (14)
  • [4] Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0
    Agarwal, Mohit
    Agarwal, Sushant
    Saba, Luca
    Chabert, Gian Luca
    Gupta, Suneet
    Carriero, Alessandro
    Pasche, Alessio
    Danna, Pietro
    Mehmedovic, Armin
    Faa, Gavino
    Shrivastava, Saurabh
    Jain, Kanishka
    Jain, Harsh
    Jujaray, Tanay
    Singh, Inder M.
    Turk, Monika
    Chadha, Paramjit S.
    Johri, Amer M.
    Khanna, Narendra N.
    Mavrogeni, Sophie
    Laird, John R.
    Sobel, David W.
    Miner, Martin
    Balestrieri, Antonella
    Sfikakis, Petros P.
    Tsoulfas, George
    Misra, Durga Prasanna
    Agarwal, Vikas
    Kitas, George D.
    Teji, Jagjit S.
    Al-Maini, Mustafa
    Dhanjil, Surinder K.
    Nicolaides, Andrew
    Sharma, Aditya
    Rathore, Vijay
    Fatemi, Mostafa
    Alizad, Azra
    Krishnan, Pudukode R.
    Yadav, Rajanikant R.
    Nagy, Frence
    Kincses, Zsigmond Tamas
    Ruzsa, Zoltan
    Naidu, Subbaram
    Viskovic, Klaudija
    Kalra, Manudeep K.
    Suri, Jasjit S.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [5] Machine learning-based classification and diagnosis of clinical cardiomyopathies
    Alimadadi, Ahmad
    Manandhar, Ishan
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    [J]. PHYSIOLOGICAL GENOMICS, 2020, 52 (09) : 391 - 400
  • [6] Polygenic Scores to Assess Atherosclerotic Cardiovascular Disease Risk Clinical Perspectives and Basic Implications
    Aragam, Krishna G.
    Natarajan, Pradeep
    [J]. CIRCULATION RESEARCH, 2020, 126 (09) : 1159 - 1177
  • [7] PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology
    Araki, Tadashi
    Ikeda, Nobutaka
    Shukla, Devarshi
    Jain, Pankaj K.
    Londhe, Narendra D.
    Shrivastava, Vimal K.
    Banchhor, Sumit K.
    Saba, Luca
    Nicolaides, Andrew
    Shafique, Shoaib
    Laird, John R.
    Suri, Jasjit S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 : 137 - 158
  • [8] A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound
    Araki, Tadashi
    Ikeda, Nobutaka
    Dey, Nilanjan
    Chakraborty, Sayan
    Saba, Luca
    Kumar, Dinesh
    Cuadrado Godia, Elisa
    Jiang, Xiaoyi
    Gupta, Ajay
    Radeva, Petia
    Laird, John R.
    Nicolaides, Andrew
    Suri, Jasjit S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 118 (02) : 158 - 172
  • [9] THE PROSPECTIVE CARDIOVASCULAR MUNSTER (PROCAM) STUDY - PREVALENCE OF HYPERLIPIDEMIA IN PERSONS WITH HYPERTENSION AND OR DIABETES-MELLITUS AND THE RELATIONSHIP TO CORONARY HEART-DISEASE
    ASSMANN, G
    SCHULTE, H
    [J]. AMERICAN HEART JOURNAL, 1988, 116 (06) : 1713 - 1724
  • [10] Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions
    Azad, Reza
    Asadi-Aghbolaghi, Maryam
    Fathy, Mahmood
    Escalera, Sergio
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 406 - 415