ON RESULTS OF MIDPOINT-TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL OPERATORS WITH TWICE-DIFFERENTIABLE FUNCTIONS

被引:0
作者
Hezenci, Fatih [1 ]
Budak, Huseyin [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
来源
HONAM MATHEMATICAL JOURNAL | 2023年 / 45卷 / 02期
关键词
midpoint-type inequality; fractional conformable integrals; fractional conformable derivatives; fractional calculus; convex function; HERMITE-HADAMARD; REAL NUMBERS; INTEGRALS; MAPPINGS;
D O I
10.5831/HMJ.2023.45.2.340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article establishes an equality for the case of twice -differentiable convex functions with respect to the conformable fractional integrals. With the help of this identity, we prove sundry midpoint -type inequalities by twice-differentiable convex functions according to conformable fractional integrals. Several important inequalities are ob-tained by taking advantage of the convexity, the Hodlder inequality, and the power mean inequality. Using the specific selection of our results, we obtain several new and well-known results in the literature.
引用
收藏
页码:340 / 358
页数:19
相关论文
共 29 条
[1]   THE FLAW IN THE CONFORMABLE CALCULUS: IT IS CONFORMABLE BECAUSE IT IS NOT FRACTIONAL [J].
Abdelhakim, Ahmed A. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) :242-254
[2]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[3]  
Anastassiou G.A., 2021, GEN FRACTIONAL CALCU
[4]   An efficient numerical technique for a biological population model of fractional order [J].
Attia, Nourhane ;
Akgul, Ali ;
Seba, Djamila ;
Nour, Abdelkader .
CHAOS SOLITONS & FRACTALS, 2020, 141
[5]   Refinements of Hermite-Hadamard Inequalities for Functions When a Power of the Absolute Value of the Second Derivative Is P-Convex [J].
Barani, A. ;
Barani, S. ;
Dragomir, S. S. .
JOURNAL OF APPLIED MATHEMATICS, 2012,
[6]   On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals [J].
Budak, Huseyin ;
Hezenci, Fatih ;
Kara, Hasan .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[7]   Hermite-Hadamard Type Inequalities for Twice Differantiable Functions via Generalized Fractional Integrals [J].
Budak, Huseyin ;
Ertugral, Fatma ;
Pehlivan, Ebru .
FILOMAT, 2019, 33 (15) :4967-4979
[8]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[9]  
Gabr A., 2021, Int. J. Appl. Comput. Math., V7, P247
[10]  
Hezenci F., 2022, CUMHUR SCI J, V43, P477, DOI [10.17776/csj.1088703, DOI 10.17776/csj.1088703]