Heavy tails and pruning in programmable photonic circuits for universal unitaries

被引:13
作者
Yu, Sunkyu [1 ]
Park, Namkyoo [2 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Intelligent Wave Syst Lab, Seoul 08826, South Korea
[2] Seoul Natl Univ, Dept Elect & Comp Engn, Photon Syst Lab, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41467-023-37611-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Authors model programmable photonic circuits targeting universal unitaries and verify that a type of unit rotation operator has a heavy-tailed distribution. They suggest hardware pruning for random unitary and present design strategies for high fidelity and energy efficiency in large-scale quantum computations and photonic deep learning accelerators. Developing hardware for high-dimensional unitary operators plays a vital role in implementing quantum computations and deep learning accelerations. Programmable photonic circuits are singularly promising candidates for universal unitaries owing to intrinsic unitarity, ultrafast tunability and energy efficiency of photonic platforms. Nonetheless, when the scale of a photonic circuit increases, the effects of noise on the fidelity of quantum operators and deep learning weight matrices become more severe. Here we demonstrate a nontrivial stochastic nature of large-scale programmable photonic circuits-heavy-tailed distributions of rotation operators-that enables the development of high-fidelity universal unitaries through designed pruning of superfluous rotations. The power law and the Pareto principle for the conventional architecture of programmable photonic circuits are revealed with the presence of hub phase shifters, allowing for the application of network pruning to the design of photonic hardware. For the Clements design of programmable photonic circuits, we extract a universal architecture for pruning random unitary matrices and prove that "the bad is sometimes better to be removed" to achieve high fidelity and energy efficiency. This result lowers the hurdle for high fidelity in large-scale quantum computing and photonic deep learning accelerators.
引用
收藏
页数:10
相关论文
共 51 条
  • [1] Unscrambling light-automatically undoing strong mixing between modes
    Annoni, Andrea
    Guglielmi, Emanuele
    Carminati, Marco
    Ferrari, Giorgio
    Sampietro, Marco
    Miller, David A. B.
    Melloni, Andrea
    Morichetti, Francesco
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e17110 - e17110
  • [2] Quantum circuits with many photons on a programmable nanophotonic chip
    Arrazola, J. M.
    Bergholm, V
    Bradler, K.
    Bromley, T. R.
    Collins, M. J.
    Dhand, I
    Fumagalli, A.
    Gerrits, T.
    Goussev, A.
    Helt, L. G.
    Hundal, J.
    Isacsson, T.
    Israel, R. B.
    Izaac, J.
    Jahangiri, S.
    Janik, R.
    Killoran, N.
    Kumar, S. P.
    Lavoie, J.
    Lita, A. E.
    Mahler, D. H.
    Menotti, M.
    Morrison, B.
    Nam, S. W.
    Neuhaus, L.
    Qi, H. Y.
    Quesada, N.
    Repingon, A.
    Sabapathy, K. K.
    Schuld, M.
    Su, D.
    Swinarton, J.
    Szava, A.
    Tan, K.
    Tan, P.
    Vaidya, V. D.
    Vernon, Z.
    Zabaneh, Z.
    Zhang, Y.
    [J]. NATURE, 2021, 591 (7848) : 54 - +
  • [3] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [4] Barabasi AL, 2016, NETWORK SCIENCE, P1
  • [5] Scale-free networks
    Barabási, AL
    Bonabeau, E
    [J]. SCIENTIFIC AMERICAN, 2003, 288 (05) : 60 - 69
  • [6] Universal programmable photonic architecture for quantum information processing
    Bartlett, Ben
    Fan, Shanhui
    [J]. PHYSICAL REVIEW A, 2020, 101 (04)
  • [7] Bishop C.M., 2006, Pattern recognition and machine learning
  • [8] Blalock DW, 2020, P MACHINE LEARNING S, P129
  • [9] Programmable photonic circuits
    Bogaerts, Wim
    Perez, Daniel
    Capmany, Jose
    Miller, David A. B.
    Poon, Joyce
    Englund, Dirk
    Morichetti, Francesco
    Melloni, Andrea
    [J]. NATURE, 2020, 586 (7828) : 207 - 216
  • [10] Generation of universal linear optics by any beam splitter
    Bouland, Adam
    Aaronson, Scott
    [J]. PHYSICAL REVIEW A, 2014, 89 (06):