A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONSMOOTH NONCONVEX FUNCTIONS WITH INEXACT INFORMATION

被引:3
作者
Huang, M. I. N. G. [1 ,2 ]
Niu, Hui-min [1 ]
Lin, Si-da [1 ]
Yin, Zi-ran [1 ]
Yuan, Jin-long [1 ]
机构
[1] Dalian Maritime Univ, Sch Sci, Dalian 116026, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Nonconvex optimization; nonsmooth optimization; inexact informa-bundle lower; C2; CONVERGENCE ANALYSIS; CONVEX-FUNCTIONS; DECOMPOSITION; APPROXIMATE; ALGORITHM; OPTIMIZATION; SMOOTH; SCHEME;
D O I
10.3934/jimo.2023057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose a redistributed proximal bundle method for a class of nonconvex nonsmooth optimization problems with inexact information, i.e., we consider the problem of computing the approximate critical points when only the inexact information about the function values and sub gradients are available and show that reasonable convergence properties are obtained. We assume that the errors in the computation of functions and sub gradients are only bounded and in principle do not have to vanish within the limits. For the nonconvex functions, we design the convexification technique, which ensures that the linearization error of its augmentation function is non negative. Meanwhile, for the inexact information, we utilize noise management strategies and update approximate parameters to reduce the impact of inexact information. Based on this method, we can obtain the approximate solution.
引用
收藏
页码:8691 / 8708
页数:18
相关论文
共 45 条
[1]  
Apkarian P, 2009, J CONVEX ANAL, V16, P641
[2]   Bundle methods in stochastic optimal power management:: A disaggregated approach using preconditioners [J].
Bacaud, L ;
Lemaréchal, C ;
Renaud, A ;
Sagastizábal, C .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 20 (03) :227-244
[3]   Convergence analysis of some methods for minimizing a nonsmooth convex function [J].
Birge, JR ;
Qi, L ;
Wei, Z .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 97 (02) :357-383
[4]   CONVERGENCE ANALYSIS OF DEFLECTED CONDITIONAL APPROXIMATE SUBGRADIENT METHODS [J].
D'Antonio, Giacomo ;
Frangioni, Antonio .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) :357-386
[5]   Approximate convexity and submonotonicity [J].
Daniilidis, A ;
Georgiev, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :292-301
[6]   IDENTIFYING STRUCTURE OF NONSMOOTH CONVEX FUNCTIONS BY THE BUNDLE TECHNIQUE [J].
Daniilidis, Aris ;
Sagastizabal, Claudia ;
Solodov, Mikhail .
SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (02) :820-840
[7]   Incremental-like bundle methods with application to energy planning [J].
Emiel, Gregory ;
Sagastizabal, Claudia .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) :305-332
[8]   A proximal bundle method for nonsmooth nonconvex functions with inexact information [J].
Hare, W. ;
Sagastizabal, C. ;
Solodov, M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (01) :1-28
[9]   Computing proximal points of nonconvex functions [J].
Hare, Warren ;
Sagastizabal, Claudia .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :221-258
[10]   A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONCONVEX OPTIMIZATION [J].
Hare, Warren ;
Sagastizabal, Claudia .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) :2442-2473