Development and external validation of a multivariable [68Ga]Ga-PSMA-11 PET-based prediction model for lymph node involvement in men with intermediate or high-risk prostate cancer

被引:9
作者
Muehlematter, Urs J. [1 ,2 ]
Schweiger, Lilit [3 ]
Ferraro, Daniela A. [1 ,4 ]
Hermanns, Thomas [5 ]
Maurer, Tobias [6 ,7 ,8 ]
Heck, Matthias M. [6 ]
Rupp, Niels J. [9 ]
Eiber, Matthias [3 ]
Rauscher, Isabel [3 ]
Burger, Irene A. [1 ,10 ]
机构
[1] Univ Zurich, Univ Hosp Zurich, Dept Nucl Med, Zurich, Switzerland
[2] Univ Zurich, Univ Hosp Zurich, Inst Diagnost & Intervent Radiol, Zurich, Switzerland
[3] Tech Univ Munich, Dept Nucl Med, Klinikum Rechts Isar, Munich, Germany
[4] Univ Sao Paulo, Fac Med FMUSP, Dept Radiol & Oncol, Sao Paulo, Brazil
[5] Univ Zurich, Univ Hosp Zurich, Dept Urol, Zurich, Switzerland
[6] Tech Univ Munich, Dept Urol, Klinikum Rechts Isar, Munich, Germany
[7] Univ Hamburg Eppendorf, Dept Urol, Hamburg, Germany
[8] Univ Hamburg Eppendorf, Martini Klin, Hamburg, Germany
[9] Univ Zurich, Univ Hosp Zurich, Dept Pathol & Mol Pathol, Zurich, Switzerland
[10] Baden Cantonal Hosp, Dept Nucl Med, Baden, Switzerland
关键词
Prostate cancer; Lymph node invasion; Prostate-specific membrane antigen positron emission tomography; Prediction; RADICAL PROSTATECTOMY; GLEASON SCORE; DISSECTION; ANTIGEN; NOMOGRAM; OUTCOMES;
D O I
10.1007/s00259-023-06278-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop and evaluate a lymph node invasion (LNI) prediction model for men staged with [Ga-68]Ga-PSMA-11 PET.MethodsA consecutive sample of intermediate to high-risk prostate cancer (PCa) patients undergoing [Ga-68]Ga-PSMA-11 PET, extended pelvic lymph node dissection (ePLND), and radical prostatectomy (RP) at two tertiary referral centers were retrospectively identified. The training cohort comprised 173 patients (treated between 2013 and 2017), the validation cohort 90 patients (treated between 2016 and 2019). Three models for LNI prediction were developed and evaluated using cross-validation. Optimal risk-threshold was determined during model development. The best performing model was evaluated and compared to available conventional and multiparametric magnetic resonance imaging (mpMRI)-based prediction models using area under the receiver operating characteristic curves (AUC), calibration plots, and decision curve analysis (DCA).ResultsA combined model including prostate-specific antigen, biopsy Gleason grade group, [Ga-68]Ga Ga-PSMA-11 positive volume of the primary tumor, and the assessment of the [Ga-68]Ga-PSMA-11 report N-status yielded an AUC of 0.923 (95% CI 0.863-0.984) in the external validation. Using a cutoff of >= 17%, 44 (50%) ePLNDs would be spared and LNI missed in one patient (4.8%). Compared to conventional and MRI-based models, the proposed model showed similar calibration, higher AUC (0.923 (95% CI 0.863-0.984) vs. 0.700 (95% CI 0.548-0.852)-0.824 (95% CI 0.710-0.938)) and higher net benefit at DCA.ConclusionsOur results indicate that information from [Ga-68]Ga-PSMA-11 may improve LNI prediction in intermediate to high-risk PCa patients undergoing primary staging especially when combined with clinical parameters. For better LNI prediction, future research should investigate the combination of information from both PSMA PET and mpMRI for LNI prediction in PCa patients before RP.
引用
收藏
页码:3137 / 3146
页数:10
相关论文
共 39 条
[1]  
Bhadani R, 2021, ARXIV
[2]   Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer [J].
Briganti, Alberto ;
Chun, Felix K. -H. ;
Salonia, Andrea ;
Suardi, Nazareno ;
Gallina, Andrea ;
Da Pozzo, Luigi Filippo ;
Roscigno, Marco ;
Zanni, Giuseppe ;
Valiquette, Luc ;
Rigatti, Patrizio ;
Montorsi, Francesco ;
Karakiewicz, Pierre I. .
EUROPEAN UROLOGY, 2006, 50 (05) :1006-1013
[3]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639]
[4]   Machine learning-based analysis of [18F]DCFPyL PET radiomics for risk stratification in primary prostate cancer [J].
Cysouw, Matthijs C. F. ;
Jansen, Bernard H. E. ;
van de Brug, Tim ;
Oprea-Lager, Daniela E. ;
Pfaehler, Elisabeth ;
de Vries, Bart M. ;
van Moorselaar, Reindert J. A. ;
Hoekstra, Otto S. ;
Vis, Andre N. ;
Boellaard, Ronald .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (02) :340-349
[5]   External Validation of the European Association of Urology Recommendations for Pelvic Lymph Node Dissection in Patients Treated with Robot-Assisted Radical Prostatectomy [J].
Dell'Oglio, Paolo ;
Abdollah, Firas ;
Suardi, Nazareno ;
Gallina, Andrea ;
Cucchiara, Vito ;
Vizziello, Damiano ;
Zaffuto, Emanuele ;
Cantiello, Francesco ;
Damiano, Rocco ;
Shariat, Sharhokh ;
Montorsi, Francesco ;
Briganti, Alberto .
JOURNAL OF ENDOUROLOGY, 2014, 28 (04) :416-423
[6]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[7]   Development and External Validation of a Multiparametric Magnetic Resonance Imaging and International Society of Urological Pathology Based Add-On Prediction Tool to Identify Prostate Cancer Candidates for Pelvic Lymph Node Dissection [J].
Draulans, Cedric ;
Everaerts, Wouter ;
Isebaert, Sofie ;
Van Bruwaene, Siska ;
Gevaert, Thomas ;
Oyen, Raymond ;
Joniau, Steven ;
Lerut, Evelyne ;
De Wever, Liesbeth ;
Laenen, Annouschka ;
Weynand, Birgit ;
Defraene, Gilles ;
Vanhoutte, Els ;
De Meerleer, Gert ;
Haustermans, Karin .
JOURNAL OF UROLOGY, 2020, 203 (04) :713-718
[8]  
EAU Guidelines, 2020, EAU ANN C AMST AMH N
[9]  
EAU Guidelines, 2021, EAU ANN C MIL ARNH N
[10]  
EAU Guidelines, 2022, EAU ANN C AMST AMH N