Hurricane damage assessment in satellite images using hybrid VGG16 model

被引:0
|
作者
Kaur, Swapandeep [1 ]
Gupta, Sheifali [1 ]
Singh, Swati [2 ]
Koundal, Deepika [3 ]
Hoang, Vinh Truong [4 ]
Alkhayyat, Ahmed [5 ]
Vu-Van, Hung [4 ]
机构
[1] Chitkara Univ, Inst Engn & Technol, Rajpura, Punjab, India
[2] Himachal Pradesh Univ, Univ Inst Technol, Dept Elect & Commun Engn, Shimla, India
[3] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun, India
[4] Ho Chi Minh City Open Univ, Fac Comp Sci, Ho Chi Minh City, Vietnam
[5] Islamic Univ, Coll Tech Engn, Dept Comp Tech Engn, Najaf, Iraq
关键词
damage assessment; hurricane; satellite images; VGG16; Machine learning classifiers; K-nearest neighbor; logistic regression; decision tree; random forest; XGBoost; REGRESSION;
D O I
10.1117/1.JEI.32.2.021606
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hurricanes are one of the most disastrous natural phenomena occurring on Earth that cause loss of human lives and immense damage to property. A damage assessment method has been proposed for damage caused to buildings due to Hurricane Harvey that hit the Texas region in the year 2017. The aim of our study is to predict if there is any damage to the buildings present in the postdisaster satellite images. Principal component analysis has been used for the visualization of data. The VGG16 model has been used for extracting features from the input images. K-nearest neighbor (KNN), logistic regression, decision tree, random forest, and XGBoost classification techniques have been used for classification of the images whose features have been extracted from VGG16. Best accuracy of 97% is obtained by KNN classifier for the balanced test set, and accuracy of 96% is obtained by logistic regression for the unbalanced test set.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Visualisation-based binary classification of android malware using vgg16
    Marwaha, Aryan
    Malik, Rami Qays
    Beram, Shehab Mohamed
    Rizwan, Ali
    Kishore, Kakarla Hari
    Thakur, Deepak
    Gera, Tanya
    Shabaz, Mohammad
    IET SOFTWARE, 2023, 17 (04) : 717 - 728
  • [42] Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence
    Fahad Ahmed
    Sagheer Abbas
    Atifa Athar
    Tariq Shahzad
    Wasim Ahmad Khan
    Meshal Alharbi
    Muhammad Adnan Khan
    Arfan Ahmed
    Scientific Reports, 14
  • [43] VGG16: Offline handwritten devanagari word recognition using transfer learning
    Singh, Sukhjinder
    Garg, Naresh Kumar
    Kumar, Munish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 72561 - 72594
  • [44] Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence
    Ahmed, Fahad
    Abbas, Sagheer
    Athar, Atifa
    Shahzad, Tariq
    Khan, Wasim Ahmad
    Alharbi, Meshal
    Khan, Muhammad Adnan
    Ahmed, Arfan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [45] Automated Detection of Diabetic Retinopathy Segmented Images using ResNet50 and VGG16 Deep Learning Algorithms
    Betha, Sashi Kanth
    Seventline, J. B.
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 159 - 165
  • [46] Circuit Manufacturing Defect Detection Using VGG16 Convolutional Neural Networks
    Althubiti, Sara A.
    Alenezi, Fayadh
    Shitharth, S.
    Sangeetha, K.
    Reddy, Chennareddy Vijay Simha
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [47] Deep Optimal VGG16 Based COVID-19 Diagnosis Model
    Buvana, M.
    Muthumayil, K.
    Kumar, S. Senthil
    Nebhen, Jamel
    Alshamrani, Sultan S.
    Ali, Ihsan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 43 - 58
  • [48] COVID-19 Detection Model on Chest CT Scan and X-ray Images Using VGG16 Convolutional Neural Network
    Latisha, Shannen
    Halim, Albert Christopher
    Ricardo, Regan
    Suhartono, Derwin
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [49] Fish species recognition using VGG16 deep convolutional neural network
    Hridayami P.
    Putra I.K.G.D.
    Wibawa K.S.
    Journal of Computing Science and Engineering, 2019, 13 (03) : 124 - 130
  • [50] An intelligent approach to detect facial retouching using Fine Tuned VGG16
    Sheth, Kinjal Ravi
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2024, 16 (06) : 583 - 600