A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: A case of Shenzhen's carbon market in China

被引:41
|
作者
Shi, Hanxiao [1 ]
Wei, Anlei [1 ,2 ]
Xu, Xiaozhen [1 ]
Zhu, Yaqi [1 ]
Hu, Hao [1 ]
Tang, Songjun [1 ]
机构
[1] Northwest Univ, Coll Urban & Environm Sci, Shaanxi Key Lab Earth Surface Syst & Environm Carr, Xian 710127, Shaanxi, Peoples R China
[2] Northwest Univ, 1 Xuefu Ave,Guodu Educ & Technol Ind Zone, Xian, Shaanxi, Peoples R China
关键词
Carbon price prediction; Carbon market; Deep learning; CNN-LSTM; Robustness; DECOMPOSITION; ARIMA;
D O I
10.1016/j.jenvman.2024.120131
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately predicting carbon trading prices using deep learning models can help enterprises understand the operational mechanisms and regulations of the carbon market. This is crucial for expanding the industries covered by the carbon market and ensuring its stable and healthy development. To ensure the accuracy and reliability of the predictions in practical applications, it is important to evaluate the model's robustness. In this paper, we built models with different parameters to predict carbon trading prices, and proposed models with high accuracy and robustness. The accuracy of the models was assessed using traditional survey indicators. The robustness of the CNN-LSTM model was compared to that of the LSTM model using Z-scores. The CNN-LSTM model with the best prediction performance was compared to a single LSTM model, resulting in a 9% reduction in MSE and a 0.0133 shortening of the Z-score range. Furthermore, the CNN-LSTM model achieved a level of accuracy comparable to other popular models such as CEEMDAN, Boosting, and GRU. It also demonstrated a training speed improvement of at least 40% compared to the aforementioned methods. These results suggest that the CNN-LSTM enhances model resilience. Moreover, the practicality of using Z-score to evaluate model robustness is confirmed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Carbon trading price forecasting based on parameter optimization VMD and deep network CNN-LSTM model
    Ling, Meijun
    Cao, Guangxi
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024, 11 (01)
  • [2] Carbon futures price forecasting based with ARIMA-CNN-LSTM model
    Ji, Lei
    Zou, Yingchao
    He, Kaijian
    Zhu, Bangzhu
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 33 - 38
  • [3] Deep insight into daily runoff forecasting based on a CNN-LSTM model
    Deng, Huiqi
    Chen, Wenjie
    Huang, Guoru
    NATURAL HAZARDS, 2022, 113 (03) : 1675 - 1696
  • [4] Deep insight into daily runoff forecasting based on a CNN-LSTM model
    Huiqi Deng
    Wenjie Chen
    Guoru Huang
    Natural Hazards, 2022, 113 : 1675 - 1696
  • [5] Bitcoin price forecasting method based on CNN-LSTM hybrid neural network model
    Li, Yan
    Dai, Wei
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (13): : 344 - 347
  • [6] Fluctuations and Forecasting of Carbon Price Based on A Hybrid Ensemble Learning GARCH-LSTM-Based Approach: A Case of Five Carbon Trading Markets in China
    Liu, Sha
    Zhang, Yiting
    Wang, Junping
    Feng, Danlei
    SUSTAINABILITY, 2024, 16 (04)
  • [7] X-ray spectra correction based on deep learning CNN-LSTM model
    Ma, Xing-Ke
    Huang, Hong-Quan
    Huang, Bo-Rui
    Shen, Zhi-Wen
    Wang, Qing-Tai
    Xiao, Yu -Yu
    Zhong, Cheng-Lin
    Xin, Hao
    Sun, Peng
    Jiang, Kai -Ming
    Tang, Lin
    Ding, Wei-Cheng
    Zhou, Wei
    Zhou, Jian-Bin
    MEASUREMENT, 2022, 199
  • [8] A GENERALIZABLE MODEL FOR SEIZURE PREDICTION BASED ON DEEP LEARNING USING CNN-LSTM ARCHITECTURE
    Shahbazi, Mohamad
    Aghajan, Hamid
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 469 - 473
  • [9] Iron Ore Information Extraction Based on CNN-LSTM Composite Deep Learning Model
    Chen, Haili
    Xia, Mengxiang
    Zhang, Yaping
    Zhao, Ruonan
    Song, Bingran
    Bai, Yang
    IEEE ACCESS, 2025, 13 : 42296 - 42311
  • [10] Spam Filtering of Mobile SMS Using CNN-LSTM Based Deep Learning Model
    Hossain, Syed Md Minhaz
    Sumon, Jayed Akbar
    Sen, Anik
    Alam, Md Iftaker
    Kamal, Khaleque Md Aashiq
    Alqahtani, Hamed
    Sarker, Iqbal H.
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 106 - 116