Weighted fractional Sobolev spaces as interpolation spaces in bounded domains

被引:2
作者
Acosta, Gabriel [1 ,2 ]
Drelichman, Irene [1 ,3 ]
Duran, Ricardo G. G. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET, Ciudad Univ, Buenos Aires, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ, Buenos Aires, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, IMAS UBA CONICET, Ciudad Univ, RA-1428 Buenos Aires, Argentina
关键词
fractional Sobolev spaces; Gagliardo seminorm; irregular domains; interpolation spaces; POINCARE INEQUALITIES;
D O I
10.1002/mana.202200182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the real interpolation space between a weighted Lp$L<^>p$ space and a weighted Sobolev space in arbitrary bounded domains in Rn$\mathbb {R}<^>n$, with weights that are positive powers of the distance to the boundary.
引用
收藏
页码:4374 / 4385
页数:12
相关论文
共 15 条
  • [1] A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS
    Acosta, Gabriel
    Pablo Borthagaray, Juan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) : 472 - 495
  • [2] THE BOURGAIN-BREZIS-MIRONESCU FORMULA IN ARBITARY BOUNDED DOMIANS
    Drelichman, Irene
    Duran, Ricardo G.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (02) : 701 - 708
  • [3] IMPROVED POINCARE INEQUALITIES IN FRACTIONAL SOBOLEV SPACES
    Drelichman, Irene
    Duran, Ricardo G.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 885 - 903
  • [4] On the interpolation space (Lp(Ω), W1,p(Ω))s,p in non-smooth domains
    Drelichman, Irene
    Duran, Ricardo G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 91 - 101
  • [5] On comparability of integral forms
    Dyda, B
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) : 564 - 577
  • [6] On improved fractional Sobolev-Poincar, inequalities
    Dyda, Bartlomiej
    Ihnatsyeva, Lizaveta
    Vahakangas, Antti V.
    [J]. ARKIV FOR MATEMATIK, 2016, 54 (02): : 437 - 454
  • [7] Fractional Sobolev-Poincare Inequalities in Irregular Domains
    Guo, Chang-Yu
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (03) : 839 - 856
  • [8] Hajlasz P., 1993, EXPO MATH, V11, P377
  • [9] On fractional Poincar, inequalities
    Hurri-Syrjanen, Ritva
    Vahakangas, Antti V.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2013, 120 : 85 - 104
  • [10] Lunardi A., 2018, INTERPOLATION THEORY, V3rd