Exploring Pseudo-Analog Video Transmission for Edge-AI Vision Applications

被引:1
作者
Yamada, Junichiro [1 ]
Suto, Katsuya [1 ]
机构
[1] Univ Elect Commun, Grad Sch Inform & Eng, Tokyo, Japan
来源
2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC | 2023年
关键词
Pseudo-Analog Video Transmission; Edge-AI; Object Detection;
D O I
10.1109/CCNC51644.2023.10059990
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Edge-AI offloading is a promising solution for real-time object detection with resource-constrained edge devices. However, current edge architecture, which uses conventional digital video compression and modulation/coding, cannot provide stable object detection due to the scarcity of wireless resources and the explosive increase of edge devices. We employ pseudo-analog video transmission for Edge-AI offloading systems to cope with the issue. Although pseudo-analog video transmission cannot provide clear images, it has a substantial advantage for Edge-AI offloading systems, i.e., it can transmit higher-resolution video with limited bandwidth in lower Signal-to-Noise Ratio (SNR) links and do not need to control resolution according to wireless channel quality. This paper explores the impact of pseudo-analog video transmission on object detection accuracy.
引用
收藏
页数:2
相关论文
共 10 条
[1]   Closed-Loop Region of Interest Enabling High Spatial and Temporal Resolutions in Object Detection and Tracking via Wireless Camera [J].
Chen, Jack ;
Huang, Hen-Wei ;
Rupp, Philipp ;
Sinha, Anjali ;
Ehmke, Claas ;
Traverso, Giovanni .
IEEE ACCESS, 2021, 9 :87340-87350
[2]   Cluster Pruning: An Efficient Filter Pruning Method for Edge AI Vision Applications [J].
Gamanayake, Chinthaka ;
Jayasinghe, Lahiru ;
Ng, Benny Kai Kiat ;
Yuen, Chau .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) :802-816
[3]   SoftCast: One-Size-Fits-All Wireless Video [J].
Jakubczak, Szymon ;
Katabi, Dina .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2010, 40 (04) :449-450
[4]  
Ran XK, 2018, IEEE INFOCOM SER, P1421, DOI 10.1109/INFOCOM.2018.8485905
[5]  
Redmon J., 2018, PREPRINT, DOI [DOI 10.48550/ARXIV.1804.02767, 10.48550/arXiv.1804.02767]
[6]   Object Recognition in Very Low Resolution Images Using Deep Collaborative Learning [J].
Seo, Jeongin ;
Park, Hyeyoung .
IEEE ACCESS, 2019, 7 :134071-134082
[7]  
Wang HX, 2020, IEEE INFOCOM SER, P1379, DOI [10.1109/infocom41043.2020.9155517, 10.1109/INFOCOM41043.2020.9155517]
[8]  
Xu YH, 2018, AAAI CONF ARTIF INTE, P4335
[9]   Implementing Practical DNN-Based Object Detection Offloading Decision for Maximizing Detection Performance of Mobile Edge Devices [J].
Yoon, Giha ;
Kim, Geun-Yong ;
Yoo, Hark ;
Kim, Sung Chang ;
Kim, Ryangsoo .
IEEE ACCESS, 2021, 9 :140199-140211
[10]   Residual Super-Resolution Single Shot Network for Low-Resolution Object Detection [J].
Zhao, Xiaotong ;
Li, Wei ;
Zhang, Yifan ;
Feng, Zhiyong .
IEEE ACCESS, 2018, 6 :47780-47793