A deep-learning algorithm to classify skin lesions from mpox virus infection

被引:51
作者
Thieme, Alexander H. H. [1 ,2 ,3 ,4 ]
Zheng, Yuanning [1 ,2 ]
Machiraju, Gautam [5 ]
Sadee, Chris [1 ,2 ]
Mittermaier, Mirja [4 ,6 ]
Gertler, Maximilian [7 ]
Salinas, Jorge L. [8 ]
Srinivasan, Krithika [8 ]
Gyawali, Prashnna [1 ]
Carrillo-Perez, Francisco [1 ,2 ,9 ]
Capodici, Angelo [1 ,2 ,10 ]
Uhlig, Maximilian [11 ]
Habenicht, Daniel [12 ]
Loeser, Anastassia [13 ]
Kohler, Maja [14 ,15 ]
Schuessler, Maximilian [1 ]
Kaul, David [3 ]
Gollrad, Johannes [3 ]
Ma, Jackie [16 ]
Lippert, Christoph [17 ,18 ]
Billick, Kendall [19 ]
Bogoch, Isaac [20 ]
Hernandez-Boussard, Tina [1 ,2 ,21 ]
Geldsetzer, Pascal [22 ,23 ]
Gevaert, Olivier [1 ,2 ]
机构
[1] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford Ctr Biomed Informat Res BMIR, Dept Biomed Data Sci, Stanford, CA 94305 USA
[3] Charite Univ Med Berlin, Dept Radiat Oncol, Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, BIH Biomed Innovat Acad, BIH Charite Digital Clinician Scientist Program, Berlin, Germany
[5] Stanford Univ, Dept Biomed Data Sci, Stanford, CA USA
[6] Charite Univ Med Berlin, Dept Infect Dis & Resp Med, Berlin, Germany
[7] Charite Univ Med Berlin, Inst Trop Med & Int Hlth, Berlin, Germany
[8] Stanford Univ, Dept Med, Div Infect Dis & Geog Med, Stanford, CA USA
[9] Univ Granada, Dept Architecture & Comp Technol ATC, Granada, Spain
[10] Univ Bologna, Dept Biomed & Neuromotor Sci, Alma Mater Studiorum, Bologna, Italy
[11] Justus Liebig Univ Giessen, Dept Med, Giessen, Germany
[12] Tech Univ Berlin, Berlin, Germany
[13] Univ Med Ctr Schleswig Holstein, Dept Radiotherapy, Lubeck, Germany
[14] Heidelberg Univ Hosp, Heidelberg Inst Global Hlth, Heidelberg, Germany
[15] Univ Basel, Ctr Cognit & Decis Sci, Dept Psychol, Basel, Switzerland
[16] Fraunhofer Heinrich Hertz Inst, Dept Artificial Intelligence, Berlin, Germany
[17] Univ Potsdam, Hasso Plattner Inst, Digital Hlth & Machine Learning, Potsdam, Germany
[18] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, New York, NY USA
[19] Univ Hlth Network, Toronto Western Hosp, Div Dermatol, Toronto, ON, Canada
[20] Univ Hlth Network, Toronto Gen Hosp, Div Infect Dis, Toronto, ON, Canada
[21] Stanford Univ, Dept Surg, Stanford, CA USA
[22] Stanford Univ, Dept Med, Div Primary Care & Populat Hlth, Stanford, CA USA
[23] Chan Zuckerberg Biohub, San Francisco, CA USA
关键词
ARTIFICIAL-INTELLIGENCE; CANCER;
D O I
10.1038/s41591-023-02225-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A deep-learning algorithm was developed to identify skin lesions caused by the mpox virus and was then implemented in a web-based app designed for patient use. Undetected infection and delayed isolation of infected individuals are key factors driving the monkeypox virus (now termed mpox virus or MPXV) outbreak. To enable earlier detection of MPXV infection, we developed an image-based deep convolutional neural network (named MPXV-CNN) for the identification of the characteristic skin lesions caused by MPXV. We assembled a dataset of 139,198 skin lesion images, split into training/validation and testing cohorts, comprising non-MPXV images (n = 138,522) from eight dermatological repositories and MPXV images (n = 676) from the scientific literature, news articles, social media and a prospective cohort of the Stanford University Medical Center (n = 63 images from 12 patients, all male). In the validation and testing cohorts, the sensitivity of the MPXV-CNN was 0.83 and 0.91, the specificity was 0.965 and 0.898 and the area under the curve was 0.967 and 0.966, respectively. In the prospective cohort, the sensitivity was 0.89. The classification performance of the MPXV-CNN was robust across various skin tones and body regions. To facilitate the usage of the algorithm, we developed a web-based app by which the MPXV-CNN can be accessed for patient guidance. The capability of the MPXV-CNN for identifying MPXV lesions has the potential to aid in MPXV outbreak mitigation.
引用
收藏
页码:738 / +
页数:23
相关论文
共 42 条
[1]   A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy [J].
Beer, Ellen M. ;
Rao, V. Bhargavi .
PLOS NEGLECTED TROPICAL DISEASES, 2019, 13 (10)
[2]  
Charite Universitatsmedizin-Berlin, 2022, POXAPP INSTANCE CHAR
[3]  
Chen T., 2020, Advances in Neural Information Processing Systems, V33, P22243
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]  
Du HF, 2021, AAAI CONF ARTIF INTE, V35, P12078
[6]   Ongoing monkeypox virus outbreak, Portugal, 29 April to 23 May 2022 [J].
Duque, Mariana Perez ;
Ribeiro, Sofia ;
Martins, Joao Vieira ;
Casaca, Pedro ;
Leite, Pedro Pinto ;
Tavares, Margarida ;
Mansinho, Kamal ;
Duque, Luis Miguel ;
Fernandes, Candida ;
Cordeiro, Rita ;
Borrego, Maria Jose ;
Pelerito, Ana ;
de Carvalho, Isabel Lopes ;
Nuncio, Sofia ;
Manageiro, Vera ;
Minetti, Corrado ;
Machado, Jorge ;
Haussig, Joana M. ;
Croci, Roberto ;
Spiteri, Gianfranco ;
Casal, Ana Sofia ;
Mendes, Diana ;
Souto, Tiago ;
Pocinho, Sara ;
Fernandes, Teresa ;
Firme, Ana ;
Vasconcelos, Paula ;
Freitas, Graca .
EUROSURVEILLANCE, 2022, 27 (22)
[7]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[8]  
European Centre for Disease Prevention and Control, 2022, CONS CONT TRAC MONK
[9]  
European Centre for Disease Prevention and Control, 2022, FACTSH HLTH PROF MON
[10]  
European Centre for Disease Prevention and Control/WHO Regional Office for Europe, 2022, MONK JOINT EP OV