Canonical curves and Kropina metrics in Lagrangian contact geometry

被引:1
|
作者
Ma, Tianyu [1 ]
Flood, Keegan J. [2 ]
Matveev, Vladimir S. [3 ]
Zadnik, Vojtech [4 ]
机构
[1] Natl Res Univ Higher Sch Econ, Fac Math, Moscow 119048, Russia
[2] UniDistance Suisse, Fac Math & Comp Sci, Schinerstr18, CH-3900 Brig, Switzerland
[3] Friedrich Schiller Univ Jena, Inst Math, D-07737 Jena, Germany
[4] Masaryk Univ, Dept Math & Stat, Kotlarska 2, Brno 61137, Czech Republic
关键词
Fefferman-type construction; Lagrangian contact structure; chains; Kropina metric; pseudo-Finsler metric; null geodesics; CR; CHAINS;
D O I
10.1088/1361-6544/ad0c2b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a Fefferman-type construction from Lagrangian contact to split-signature conformal structures and examine several related topics. In particular, we describe the canonical curves and their correspondence. We show that chains and null-chains of an integrable Lagrangian contact structure are the projections of null-geodesics of the Fefferman space. Employing the Fermat principle, we realize chains as geodesics of Kropina (pseudo-Finsler) metrics. Using recent rigidity results, we show that 'sufficiently many' chains determine the Lagrangian contact structure. Separately, we comment on Lagrangian contact structures induced by projective structures and the special case of dimension three.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] On Kropina metrics
    Nagaraja, H. G.
    AFRIKA MATEMATIKA, 2014, 25 (03) : 519 - 527
  • [2] Canonical metrics in complex geometry
    Fino, Anna
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 185 - 198
  • [3] Contact geometry in Lagrangian mechanics
    Severa, P
    JOURNAL OF GEOMETRY AND PHYSICS, 1999, 29 (03) : 235 - 242
  • [4] LAGRANGIAN INTERSECTIONS IN CONTACT GEOMETRY
    ELIASHBERG, Y
    HOFER, H
    SALAMON, D
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) : 244 - 269
  • [5] Contact Geometry of Curves
    Vassiliou, Peter J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [6] Yamabe Problem for Kropina Metrics
    Behzad Najafi
    Negin Youseflavi
    Akbar Tayebi
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 323 - 333
  • [7] On Einstein-Kropina metrics
    Zhang, Xiaoling
    Shen, Yi-Bing
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (01) : 80 - 92
  • [8] On weakly stretch Kropina metrics
    Tayebi, A.
    Barati, F.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 93
  • [9] Yamabe Problem for Kropina Metrics
    Najafi, Behzad
    Youseflavi, Negin
    Tayebi, Akbar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (SUPPL 1) : 323 - 333
  • [10] On dually flat Kropina metrics
    Chen, Guangzu
    Liu, Lihong
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (12)