FISH painting for chromosome identification of aneuploid cauliflower (Brassica oleracea L. var. botrytis)

被引:1
作者
Ji, Xianwen [1 ,2 ]
Aflitos, Saulo Alves [3 ]
Peters, Sander [3 ]
Schranz, M. Eric [4 ]
Philipse-Berendsen, Jirska [5 ]
Vogelaar, Aat [5 ]
Lelivelt, Cilia [5 ]
de Jong, Hans [1 ]
机构
[1] Wageningen Univ & Res Ctr WUR, Lab Genet, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands
[2] Iribov, NL-1704 BH Heerhugowaard, Netherlands
[3] WUR, Cluster Appl Bioinformat, Business Unit Biosci, Wageningen, Netherlands
[4] Wageningen Univ & Res Ctr WUR, Biosystemat Grp, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands
[5] Rijk Zwaan R&D Fijnaart, Eerste Kruisweg 9, NL-4793 RS Fijnaart, Netherlands
来源
NUCLEUS-INDIA | 2023年 / 66卷 / 03期
关键词
Cauliflower; Brassica oleracea; Aneuploidy; Chromosome identification; Fluorescence in situ hybridisation; IN-SITU HYBRIDIZATION; ARABIDOPSIS-THALIANA; REPETITIVE SEQUENCES; GENOME EVOLUTION; WHEAT; KARYOTYPE; DNA; TOMATO; GENES; NAPUS;
D O I
10.1007/s13237-023-00449-z
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A common problem in the cultivation and breeding of cauliflower (Brassica oleracea L. var. botrytis) is the occurrence of aneuploids in offspring families. To reveal the chromosomal cause of such numerical variants, it was necessary to develop karyotype tools with which chromosomes can be easily identified. Since mitotic chromosomes in this crop are morphologically similar and lack differentiating banding patterns, we tested two Fluorescent in situ Hybridization (FISH) procedures for chromosome identification: (1) FISH painting with diagnostic repetitive DNA patterns and (2) cross-species chromosome painting. The first method consists of a five-colour FISH with 5s rDNA, 45S rDNA, and two Brassica rapa centromere-specific repeats, and a B. rapa BAC (KBrH092N02) containing a dispersed repeat of an unknown class. The second method is an advanced FISH technology based on hybridising DNA probes of a related species under adapted stringency conditions to identify their homoeologous loci. To this end, we applied four pools of BACs from Arabidopsis thaliana in a multicolour FISH for a banding pattern on the chromosomes of cauliflower (Brassica oleracea L. var. botrytis). Due to the genome triplication and various chromosome rearrangements of Brassica oleracea compared to Arabidopsis, we used MUMmer whole-genome alignment plot information to select Arabidopsis BAC pools with which all cauliflower chromosomes could be identified. In a sample of 21 plants with aberrant phenotypes, we demonstrated primary trisomy for chromosomes 1-6 and 8, and telo-trisomy for chromosomes 7 and 9. Finally, we discuss the advantages and drawbacks of the two painting methods and eventual alternatives for demonstrating numerical aberrations in the cauliflower populations.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 79 条
[1]   Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae) [J].
Adams, SP ;
Leitch, IJ ;
Bennet, MD ;
Chase, MW ;
Leitch, AR .
AMERICAN JOURNAL OF BOTANY, 2000, 87 (11) :1578-1583
[2]   A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion [J].
Amarillo, F. Ina E. ;
Bass, Hank W. .
GENETICS, 2007, 177 (03) :1509-1526
[3]   Physical mapping of DNA repetitive sequences to mitotic and meiotic chromosomes of Brassica oleracea var. alboglabra by fluorescence in situ hybridization [J].
Susan J Armstrong ;
Paul Fransz ;
David F Marshall ;
Gareth H Jones .
Heredity, 1998, 81 (6) :666-673
[4]   SEQUENCE AND ORGANIZATION OF 5S RIBOSOMAL RNA-ENCODING GENES OF ARABIDOPSIS-THALIANA [J].
CAMPELL, BR ;
SONG, YG ;
POSCH, TE ;
CULLIS, CA ;
TOWN, CD .
GENE, 1992, 112 (02) :225-228
[5]   Aberrant plants in cauliflower: 1. Phenotype and heredity [J].
Chable, Veronique ;
Rival, Alain ;
Cadot, Valerie ;
Boulineau, Francois ;
Salmon, Armel ;
Bellis, Henri ;
Manzanares-Dauleux, Maria J. .
EUPHYTICA, 2008, 164 (02) :325-337
[6]   "Aberrant" plants in cauliflower: 2. Aneuploidy and global DNA methylation [J].
Chable, Veronique ;
Rival, Alain ;
Beule, Thierry ;
Jahier, Joseph ;
Eber, Frederique ;
Cadot, Valerie ;
Boulineau, Francois ;
Salmon, Armel ;
Bellis, Henri ;
Manzanares-Dauleux, Maria J. .
EUPHYTICA, 2009, 170 (03) :275-287
[7]   Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm Amborella [J].
Chamala, Srikar ;
Chanderbali, Andre S. ;
Der, Joshua P. ;
Lan, Tianying ;
Walts, Brandon ;
Albert, Victor A. ;
Depamphilis, Claude W. ;
Leebens-Mack, Jim ;
Rounsley, Steve ;
Schuster, Stephan C. ;
Wing, Rod A. ;
Xiao, Nianqing ;
Moore, Richard ;
Soltis, Pamela S. ;
Soltis, Douglas E. ;
Barbazuk, W. Brad .
SCIENCE, 2013, 342 (6165) :1516-1517
[8]   Genome triplication drove the diversification of Brassica plants [J].
Cheng, Feng ;
Wu, Jian ;
Wang, Xiaowu .
HORTICULTURE RESEARCH, 2014, 1
[9]   Toward a cytological characterization of the rice genome [J].
Cheng, ZK ;
Buell, CR ;
Wing, RA ;
Gu, MH ;
Jiang, JM .
GENOME RESEARCH, 2001, 11 (12) :2133-2141
[10]   Comparative Analysis between Homoeologous Genome Segments of Brassica napus and Its Progenitor Species Reveals Extensive Sequence-Level Divergence [J].
Cheung, Foo ;
Trick, Martin ;
Drou, Nizar ;
Lim, Yong Pyo ;
Park, Jee-Young ;
Kwon, Soo-Jin ;
Kim, Jin-A ;
Scott, Rod ;
Pires, J. Chris ;
Paterson, Andrew H. ;
Town, Chris ;
Bancroft, Ian .
PLANT CELL, 2009, 21 (07) :1912-1928