Deep learning enabled fast 3D brain MRI at 0.055 tesla

被引:30
作者
Man, Christopher [1 ,2 ]
Lau, Vick [1 ,2 ]
Su, Shi [1 ,2 ]
Zhao, Yujiao [1 ,2 ]
Xiao, Linfang [1 ,2 ]
Ding, Ye [1 ,2 ]
Leung, Gilberto K. K. [3 ]
Leong, Alex T. L. [1 ,2 ]
Wu, Ed X. [1 ,2 ]
机构
[1] Univ Hong Kong, Lab Biomed Imaging & Signal Proc, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Univ Hong Kong, LKS Fac Med, Dept Surg, Hong Kong, Peoples R China
关键词
TO-NOISE RATIO; FIELD-DEPENDENCE; RECONSTRUCTION; STIMULATION; RELAXATION; FREQUENCY;
D O I
10.1126/sciadv.adi9327
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, there has been an intensive development of portable ultralow-field magnetic resonance imaging (MRI) for low-cost, shielding-free, and point-of-care applications. However, its quality is poor and scan time is long. We propose a fast acquisition and deep learning reconstruction framework to accelerate brain MRI at 0.055 tesla. The acquisition consists of a single average three-dimensional (3D) encoding with 2D partial Fourier sampling, reducing the scan time of T1- and T2-weighted imaging protocols to 2.5 and 3.2 minutes, respectively. The 3D deep learning leverages the homogeneous brain anatomy available in high-field human brain data to enhance image quality, reduce artifacts and noise, and improve spatial resolution to synthetic 1.5-mm isotropic resolution. Our method successfully overcomes low-signal barrier, reconstructing fine anatomical structures that are reproducible within subjects and consistent across two protocols. It enables fast and quality whole-brain MRI at 0.055 tesla, with potential for widespread biomedical applications.
引用
收藏
页数:14
相关论文
共 78 条
[1]   Challenges to curing primary brain tumours [J].
Aldape, Kenneth ;
Brindle, Kevin M. ;
Chesler, Louis ;
Chopra, Rajesh ;
Gajjar, Amar ;
Gilbert, Mark R. ;
Gottardo, Nicholas ;
Gutmann, David H. ;
Hargrave, Darren ;
Holland, Eric C. ;
Jones, David T. W. ;
Joyce, Johanna A. ;
Kearns, Pamela ;
Kieran, Mark W. ;
Mellinghoff, Ingo K. ;
Merchant, Melinda ;
Pfister, Stefan M. ;
Pollard, Steven M. ;
Ramaswamy, Vijay ;
Rich, Jeremy N. ;
Robinson, Giles W. ;
Rowitch, David H. ;
Sampson, John H. ;
Taylor, Michael D. ;
Workman, Paul ;
Gilbertson, Richard J. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (08) :509-520
[2]  
[Anonymous], 2021, MAGNETIC RESONANCE I
[3]   Deep learning for fast low-field MRI acquisitions [J].
Ayde, Reina ;
Senft, Tobias ;
Salameh, Najat ;
Sarracanie, Mathieu .
SCIENTIFIC REPORTS, 2022, 12 (01)
[4]   Brain charts for the human lifespan [J].
Bethlehem, R. A. I. ;
Seidlitz, J. ;
White, S. R. ;
Vogel, J. W. ;
Anderson, K. M. ;
Adamson, C. ;
Adler, S. ;
Alexopoulos, G. S. ;
Anagnostou, E. ;
Areces-Gonzalez, A. ;
Astle, D. E. ;
Auyeung, B. ;
Ayub, M. ;
Bae, J. ;
Ball, G. ;
Baron-Cohen, S. ;
Beare, R. ;
Bedford, S. A. ;
Benegal, V. ;
Beyer, F. ;
Blangero, J. ;
Blesa Cabez, M. ;
Boardman, J. P. ;
Borzage, M. ;
Bosch-Bayard, J. F. ;
Bourke, N. ;
Calhoun, V. D. ;
Chakravarty, M. M. ;
Chen, C. ;
Chertavian, C. ;
Chetelat, G. ;
Chong, Y. S. ;
Cole, J. H. ;
Corvin, A. ;
Costantino, M. ;
Courchesne, E. ;
Crivello, F. ;
Cropley, V. L. ;
Crosbie, J. ;
Crossley, N. ;
Delarue, M. ;
Delorme, R. ;
Desrivieres, S. ;
Devenyi, G. A. ;
Di Biase, M. A. ;
Dolan, R. ;
Donald, K. A. ;
Donohoe, G. ;
Dunlop, K. ;
Edwards, A. D. .
NATURE, 2022, 604 (7906) :525-+
[5]  
BOTTOMLEY PA, 1984, MED PHYS, V11, P425, DOI 10.1118/1.595535
[6]   Improving Signal-to-Noise Ratio of Hyperpolarized Noble Gas MR Imaging at 73.5 mT Using Multiturn Litz Wire Radiofrequency Receive Coils [J].
Carias, Marc F. ;
Dominguez-Viqueira, William ;
Santyr, Giles E. .
CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2011, 39B (01) :37-42
[7]  
Cho AD, 2023, SCIENCE, V379, P748, DOI 10.1126/science.adh2295
[8]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[9]   Low-field MRI can be more sensitive than high-field MRI [J].
Coffey, Aaron M. ;
Truong, Milton L. ;
Chekmenev, Eduard Y. .
JOURNAL OF MAGNETIC RESONANCE, 2013, 237 :169-174
[10]   Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers [J].
Cole, James H. ;
Franke, Katja .
TRENDS IN NEUROSCIENCES, 2017, 40 (12) :681-690