Generalizing Homophily to Simplicial Complexes

被引:3
|
作者
Sarker, Arnab [1 ]
Northrup, Natalie [1 ]
Jadbabaie, Ali [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2 | 2023年 / 1078卷
关键词
Social network analysis; Homophily; Simplicial complexes;
D O I
10.1007/978-3-031-21131-7_24
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Group interactions occur frequently in social settings, yet their properties beyond pairwise relationships in network models remain unexplored. In this work, we study homophily, the nearly ubiquitous phenomena wherein similar individuals are more likely than random to form connections with one another, and define it on simplicial complexes, a generalization of network models that goes beyond dyadic interactions. While some group homophily definitions have been proposed in the literature, we provide theoretical and empirical evidence that prior definitions mostly inherit properties of homophily in pairwise interactions rather than capture the homophily of group dynamics. Hence, we propose a new measure, k-simplicial homophily, which properly identifies homophily in group dynamics. Across 16 empirical networks, k-simplicial homophily provides information uncorrelated with homophily measures on pairwise interactions. Moreover, we show the empirical value of k-simplicial homophily in identifying when metadata on nodes is useful for predicting group interactions, whereas previous measures are uninformative.
引用
收藏
页码:311 / 323
页数:13
相关论文
共 50 条
  • [1] Higher-order homophily on simplicial complexes
    Sarker, Arnab
    Northrup, Natalie
    Jadbabaie, Ali
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (12)
  • [2] SIMPLICIAL PRODUCTS OF SIMPLICIAL COMPLEXES
    EILENBERG, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 70 - 70
  • [3] Simplicial Complexes
    Schmidt, Gunther
    Winter, Michael
    RELATIONAL TOPOLOGY, 2018, 2208 : 155 - 181
  • [4] Shellability of simplicial complexes and simplicial complexes with the free vertex property
    Zhu, Guangjun
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (01) : 181 - 190
  • [5] Simplicial Complexes are Game Complexes
    Faridi, Sara
    Huntemann, Svenja
    Nowakowski, Richard J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [6] Minors of simplicial complexes
    Kaiser, Tomas
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2597 - 2602
  • [7] IMBEDDINGS OF SIMPLICIAL COMPLEXES
    GRUNBAUM, B
    COMMENTARII MATHEMATICI HELVETICI, 1969, 44 (04) : 502 - &
  • [8] SUBSPACES OF SIMPLICIAL COMPLEXES
    CAUTY, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1972, 100 (02): : 129 - &
  • [9] COLORING SIMPLICIAL COMPLEXES
    RAY, N
    SCHMITT, W
    WRIGHT, C
    ARS COMBINATORIA, 1990, 29A : 161 - 169
  • [10] Glicci simplicial complexes
    Nagel, Uwe
    Roemer, Tim
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (10) : 2250 - 2258