N-Dimensional Lattice Integrable Systems and Their bi-Hamiltonian Structure on the Time Scale Using the R-Matrix Approach

被引:0
作者
Fang, Yong [1 ]
Sang, Xue [1 ]
Yuen, Manwai [2 ]
Zhang, Yong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Educ Univ Hong Kong, Dept Math & Informat Technol, 10 Lo Ping Rd, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
N-dimensional lattice integrable systems; time scale; R-matrix approach; bi-Hamiltonian structure; DISPERSIONLESS SYSTEMS; ALGEBRA; CONSTRUCTION; SYMMETRIES; OPERATORS; EQUATIONS; FIELD;
D O I
10.3390/axioms13030136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A time scale is a special measure chain that can unify continuous and discrete spaces, enabling the construction of integrable equations. In this paper, with the Lax operator generated by the displacement operator, N-dimensional lattice integrable systems on the time scale are given by the R-matrix approach. The recursion operators of the lattice systems are derived on the time scale. Finally, two integrable hierarchies of the discrete chain with a bi-Hamiltonian structure are obtained. In particular, we give the structure of two-field and four-field systems.
引用
收藏
页数:16
相关论文
共 34 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]   Differential equations on variable time scales [J].
Akhmet, M. U. ;
Turan, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1175-1192
[3]   R-MATRIX APPROACH TO LATTICE INTEGRABLE SYSTEMS [J].
BLASZAK, M ;
MARCINIAK, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4661-4682
[4]  
Blaszak M, 2002, J PHYS A-MATH GEN, V35, P10325, DOI 10.1088/0305-4470/35/48/308
[5]  
Blaszak M, 2002, J PHYS A-MATH GEN, V35, P10345, DOI 10.1088/0305-4470/35/48/309
[6]   Classical R-matrices on Poisson algebras and related dispersionless systems [J].
Blaszak, M .
PHYSICS LETTERS A, 2002, 297 (3-4) :191-195
[7]   On the construction of recursion operator and algebra of symmetries for field and lattice systems [J].
Blaszak, M .
REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) :27-38
[8]   Lie algebraic approach to the construction of (2+1)-dimensional lattice-field and field integrable Hamiltonian equations [J].
Blaszak, M ;
Szum, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :225-259
[9]   Dispersionless (3+1)-dimensional integrable hierarchies [J].
Blaszak, Maciej ;
Sergyeyev, Artur .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2201)
[10]   Classical R-matrix theory for bi-Hamiltonian field systems [J].
Blaszak, Maciej ;
Szablikowski, Blazej M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (40)