Analytical Solutions for a Generalized Nonlinear Local Fractional Bratu-Type Equation in a Fractal Environment

被引:6
|
作者
Alhamzi, Ghaliah [1 ]
Dubey, Ravi Shanker [2 ]
Alkahtani, Badr Saad T. [3 ]
Saini, G. L. [4 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 11989, Saudi Arabia
[2] Amity Univ Rajasthan, Amity Sch Appl Sci, Dept Math, Jaipur 302002, India
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11989, Saudi Arabia
[4] Manipal Univ Jaipur, Dept Comp & Commun Engn, Jaipur 303007, India
关键词
local fractional derivative; generalized Bratu-type equation; Adomin decomposition method; DECOMPOSITION METHOD; MEDIA;
D O I
10.3390/fractalfract8010015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of fractal space, this study presents a higher-order nonlinear local fractional Bratu-type equation and thoroughly examines this generalized nonlinear equation. Additional analysis and identification of particular special situations of the generalized local fractional Bratu equation is performed. Finally, the Adomian decomposition method is utilized to derive that solution for the generalized Bratu equation of local fractional type. This study contributes to a deeper understanding of these equations and provides a practical computational approach to their solutions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] ANALYTICAL SOLUTION FOR NON-LINEAR LOCAL FRACTIONAL BRATU-TYPE EQUATION IN A FRACTAL SPACE
    Yao, Shao-Wen
    Li, Wen-Jie
    Wang, Kang-Le
    THERMAL SCIENCE, 2020, 24 (06): : 3941 - 3947
  • [2] Analytical Solution of Generalized Bratu-Type Fractional Differential Equations Using the Homotopy Perturbation Transform Method
    Alhamzi, Ghaliah
    Gouri, Aafrin
    Alkahtani, Badr Saad T.
    Dubey, Ravi Shanker
    AXIOMS, 2024, 13 (02)
  • [3] Analytical study of fractional Bratu-type equation arising in electro-spun organic nanofibers elaboration
    Dubey, Ved Prakash
    Kumar, Rajnesh
    Kumar, Devendra
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 521 : 762 - 772
  • [4] Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow
    Xiao-Jun Yang
    J. A. Tenreiro Machado
    Jordan Hristov
    Nonlinear Dynamics, 2016, 84 : 3 - 7
  • [5] Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow
    Yang, Xiao-Jun
    Machado, J. A. Tenreiro
    Hristov, Jordan
    NONLINEAR DYNAMICS, 2016, 84 (01) : 3 - 7
  • [6] Analytical approximate solutions for nonlinear fractional differential equations
    Shawagfeh, NT
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (2-3) : 517 - 529
  • [7] An efficient computational approach for local fractional Poisson equation in fractal media
    Singh, Jagdev
    Ahmadian, Ali
    Rathore, Sushila
    Kumar, Devendra
    Baleanu, Dumitru
    Salimi, Mehdi
    Salahshour, Soheil
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1439 - 1448
  • [8] LOCAL FRACTIONAL DERIVATIVE A Powerful Tool to Model the Fractal Differential Equation
    Yao, Shaowen
    Wang, Kangle
    THERMAL SCIENCE, 2019, 23 (03): : 1703 - 1706
  • [9] Exact solutions of local fractional longitudinal wave equation in a magneto-electro-elastic circular rod in fractal media
    Ghanbari, Behzad
    Kumar, Devendra
    Singh, Jagdev
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (03) : 787 - 794
  • [10] Exact solutions of local fractional longitudinal wave equation in a magneto-electro-elastic circular rod in fractal media
    Behzad Ghanbari
    Devendra Kumar
    Jagdev Singh
    Indian Journal of Physics, 2022, 96 : 787 - 794