Artificial Intelligence for Clinical Decision Support in Acute Ischemic Stroke: A Systematic Review

被引:15
|
作者
Akay, Ela Marie Z. [1 ,2 ]
Hilbert, Adam [2 ]
Carlisle, Benjamin G. [3 ]
Madai, Vince I. [3 ,4 ]
Mutke, Matthias A. [5 ]
Frey, Dietmar [2 ]
机构
[1] Charite Univ med Berlin, Charite Lab Artificial Intelligence Med CLAIM, D-10117 Berlin, Germany
[2] Charite Univ med Berlin, Charite Lab Artificial Intelligence Med CLAIM, Berlin, Germany
[3] Charite Univ med Berlin, Berlin Inst Hlth BIH, QUEST Ctr Responsible Res, Berlin, Germany
[4] Birmingham City Univ, Fac Comp Engn & Built Environm, Sch Comp & Digital Technol, Birmingham, England
[5] Heidelberg Univ Hosp, Dept Neuroradiol, Heidelberg, Germany
关键词
artificial intelligence; decision support; humans; intelligence; ischemic stroke; INFARCT CORE; MACHINE; PREDICTION; THROMBOLYSIS; PERFUSION;
D O I
10.1161/STROKEAHA.122.041442
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background:Established randomized trial-based parameters for acute ischemic stroke group patients into generic treatment groups, leading to attempts using various artificial intelligence (AI) methods to directly correlate patient characteristics to outcomes and thereby provide decision support to stroke clinicians. We review AI-based clinical decision support systems in the development stage, specifically regarding methodological robustness and constraints for clinical implementation. Methods:Our systematic review included full-text English language publications proposing a clinical decision support system using AI techniques for direct decision support in acute ischemic stroke cases in adult patients. We (1) describe data and outcomes used in those systems, (2) estimate the systems' benefits compared with traditional stroke diagnosis and treatment, and (3) reported concordance with reporting standards for AI in healthcare. Results:One hundred twenty-one studies met our inclusion criteria. Sixty-five were included for full extraction. In our sample, utilized data sources, methods, and reporting practices were highly heterogeneous. Conclusions:Our results suggest significant validity threats, dissonance in reporting practices, and challenges to clinical translation. We outline practical recommendations for the successful implementation of AI research in acute ischemic stroke treatment and diagnosis.
引用
收藏
页码:1505 / 1516
页数:12
相关论文
共 50 条
  • [41] Perfusion Image-Aided Treatment Decision for Acute Ischemic Stroke: Validation of a Clinical Decision Support System
    Li, Xiang
    Wei, Chao
    Wu, Yuefei
    Gao, Xiang
    Sun, Jie
    Xu, Tianqi
    Chen, Chushuang
    Yang, Qing
    Parsons, Mark W.
    Huang, Yi
    Yang, Jianhong
    Lin, Longting
    CEREBROVASCULAR DISEASES, 2025,
  • [42] Strokecopilot: a literature-based clinical decision support system for acute ischemic stroke treatment
    Demuth, Stanislas
    Mueller, Joris
    Quenardelle, Veronique
    Lauer, Valerie
    Gheoca, Roxana
    Trzeciak, Malwina
    Pierre-Paul, Irene
    De Seze, Jerome
    Gourraud, Pierre-Antoine
    Wolff, Valerie
    JOURNAL OF NEUROLOGY, 2023, 270 (12) : 6113 - 6123
  • [43] Strokecopilot: a literature-based clinical decision support system for acute ischemic stroke treatment
    Stanislas Demuth
    Joris Müller
    Véronique Quenardelle
    Valérie Lauer
    Roxana Gheoca
    Malwina Trzeciak
    Irène Pierre-Paul
    Jérôme De Sèze
    Pierre-Antoine Gourraud
    Valérie Wolff
    Journal of Neurology, 2023, 270 : 6113 - 6123
  • [44] A Novel Computerized Clinical Decision Support System for Treating Thrombolysis in Patients with Acute Ischemic Stroke
    Lee, Ji Sung
    Kim, Chi Kyung
    Kang, Jihoon
    Park, Jong-Moo
    Park, Tai Hwan
    Lee, Kyung Bok
    Lee, Soo Joo
    Cho, Yong-Jin
    Ko, Jaehee
    Seo, Jinwook
    Bae, Hee-Joon
    Lee, Juneyoung
    JOURNAL OF STROKE, 2015, 17 (02) : 199 - 209
  • [45] Artificial intelligence-based clinical decision support in pediatrics
    Ramgopal, Sriram
    Sanchez-Pinto, L. Nelson
    Horvat, Christopher M.
    Carroll, Michael S.
    Luo, Yuan
    Florin, Todd A.
    PEDIATRIC RESEARCH, 2023, 93 (02) : 334 - 341
  • [46] Artificial intelligence to support clinical decision-making processes
    Garcia-Vidal, Carolina
    Sanjuan, Gemma
    Puerta-Alcalde, Pedro
    Moreno-Garcia, Estela
    Soriano, Alex
    EBIOMEDICINE, 2019, 46 : 27 - 29
  • [47] Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers
    Bizzo, Bernardo C.
    Almeida, Renata R.
    Michalski, Mark H.
    Alkasab, Tarik K.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (09) : 1351 - 1356
  • [48] Leveraging explainable artificial intelligence to optimize clinical decision support
    Liu, Siru
    Mccoy, Allison B.
    Peterson, Josh F.
    Lasko, Thomas A.
    Sittig, Dean F.
    Nelson, Scott D.
    Andrews, Jennifer
    Patterson, Lorraine
    Cobb, Cheryl M.
    Mulherin, David
    Morton, Colleen T.
    Wright, Adam
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (04) : 968 - 974
  • [49] Artificial intelligence-based clinical decision support in pediatrics
    Sriram Ramgopal
    L. Nelson Sanchez-Pinto
    Christopher M. Horvat
    Michael S. Carroll
    Yuan Luo
    Todd A. Florin
    Pediatric Research, 2023, 93 : 334 - 341
  • [50] Artificial intelligence model for tumoral clinical decision support systems
    Iglesias, Guillermo
    Talavera, Edgar
    Troya, Jesus
    Diaz-Alvarez, Alberto
    Garcia-Remesal, Miguel
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 253